Skip to main content
Log in

Evolution of ABCA4 Proteins in Vertebrates

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The ABCA4 (ABCR) gene encodes a retinal-specific ATP-binding cassette transporter. Mutations in ABCA4 are responsible for several recessive macular dystrophies and susceptibility to age related macular degeneration (AMD). The protein appears to function as a flippase of all-trans-retinaldehyde and/or its derivatives across the membrane of outer segment disks and is a potentially important element in recycling visual cycle metabolites. However, the understanding of ABCA4’s role in the visual cycle is limited due to the lack of a direct functional assay. An evolutionary analysis of ABCA4 may aid in the identification of conserved elements, the preservation of which implies functional importance. To date, only human, murine, and bovine ABCA4 genes are described. We have identified ABCA4 genes from African (Xenopus laevis) and Western (Silurana tropicalis) clawed frogs. A comparative analysis describing the evolutionary relationships between the frog ABCA4s, annotated T. rubripes ABCA4, and mammalian ABCA4 proteins was carried out. Several segments are conserved in both intradiscal loop (IL) domains, in addition to the transmembrane and ATP-binding domains. Nonconserved segments were found in the IL and cytoplasmic linker domains. Maximum likelihood analyses of the aligned sequences strongly suggest that ABCA4 was subject to purifying selection. Collectively, these data corroborate the current evolutionary model where two distinct ABCA half-transporter progenitors were combined to form a full ABCA4 progenitor in ancestral chordates. We speculate that evolutionary alterations may increase the retinoid metabolite recycling capacity of ABCA4 and may improve dark adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • J Ahn S Beharry LL Molday RS Molday (2003) ArticleTitleFunctional interaction between the two halves of the photoreceptor-specific ATP binding cassette protein ABCR (ABCA4) J Biol Chem 278 39600–39608

    Google Scholar 

  • PK Ahnelt H Kolb (2000) ArticleTitleThe mammalian photoreceptor mosaic-adaptive design Prog Retin Eye Res 19 711–777

    Google Scholar 

  • R Allikmets InstitutionalAuthorNameInternational ABCR Screening Consortium (2000) ArticleTitleFurther evidence for an association of ABCR alleles with age-related macular degeneration Am J Hum Genet 67 487–491 Occurrence Handle1:CAS:528:DC%2BD3cXntVyqsb4%3D Occurrence Handle10880298

    CAS  PubMed  Google Scholar 

  • R Allikmets NF Shroyer N Singh JM Seddon RA Lewis PS Bernstein A Peiffer NA Zabriskie Y Li A Hutchinson M Dean JR Lupski M Leppert (1997a) ArticleTitleMutation of the Stargardt disease gene (ABCR) in age-related macular degeneration Science 277 1805–1807

    Google Scholar 

  • R Allikmets N Singh H Sun NF Shroyer A Hutchinson A Chidambaram B Gerrard L Baird D Stauffer A Peiffer A Rattner P Smallwood Y Li KL Anderson RA Lewis J Nathans M Leppert M Dean JR Lupski (1997b) ArticleTitleA photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy Nat Genet 15 236–246

    Google Scholar 

  • S Aparicio J Chapman E Stupka et al. (2002) ArticleTitleWhole-genome shotgun assembly and analysis of the genome of Fugu rubripes Science 297 1301–1310 Occurrence Handle10.1126/science.1072104 Occurrence Handle1:CAS:528:DC%2BD38Xms1ejtr8%3D Occurrence Handle12142439

    Article  CAS  PubMed  Google Scholar 

  • SM Azarian GH Travis (1997) ArticleTitleThe photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt’s disease (ABCR) FEBS Lett 409 247–252

    Google Scholar 

  • EE Biswas-Fiss (2003) ArticleTitleFunctional analysis of genetic mutations in nucleotide binding domain 2 of the human retina specific ABC transporter Biochemistry 42 10683–10696

    Google Scholar 

  • AA Bondareva EE Schmidt (2003) ArticleTitleEarly vertebrate evolution of the TATA-binding protein, TBP Mol Biol Evol 20 1932–1939

    Google Scholar 

  • S Bungert LL Molday RS Molday (2001) ArticleTitleMembrane topology of the ATP binding cassette transporter ABCR and its relationship to ABC1 and related ABCA transporters: identification of N-linked glycosylation sites J Biol Chem 276 23539–23546

    Google Scholar 

  • SS Choi BT Lahn (2003) ArticleTitleAdaptive evolution of MRG, a neuron-specific gene family implicated in nociception Genome Res 13 2252–2259

    Google Scholar 

  • AV Cideciyan TS Aleman M Swider SB Schwartz JD Steinberg AJ Brucker AM Maguire J Bennett EM Stone SG Jacobson (2004) ArticleTitleMutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: A reappraisal of the human disease sequence Hum Mol Genet 13 525–534

    Google Scholar 

  • FPM Cremers DJR Pol Particlevan de M Driel Particlevan AI Hollander Particleden FJJ Haren Particlevan NVAM Knoers N Tijmes AAB Bergen K Rohrschneider A Blankenagel AJLG Pinckers AF Deutman CB Hoyng (1998) ArticleTitleAutosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR Hum Mol Genet 7 355–362 Occurrence Handle1:CAS:528:DyaK1cXitFWms7g%3D Occurrence Handle9466990

    CAS  PubMed  Google Scholar 

  • M Dean A Rzhetsky R Allikmets (2001) ArticleTitleThe human ATP-binding cassette (ABC) transporter superfamily Genome Res 11 1156–1166 Occurrence Handle10.1101/gr.GR-1649R

    Article  Google Scholar 

  • SS Deeb MJ Wakefield T Tada L Marotte S Yokoyama JAM Graves (2003) ArticleTitleThe cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): Sequence, spectral tuning, and evolution Mol Biol Evol 20 1642–1649

    Google Scholar 

  • O Hisatomi F Tokunaga (2002) ArticleTitleMolecular evolution of proteins involved in vertebrate phototransduction Comp Biochem Physiol B 133 509–522 Occurrence Handle10.1016/S1096-4959(02)00127-6 Occurrence Handle12470815

    Article  PubMed  Google Scholar 

  • DM Hunt KS Dulai JC Partridge P Cottrill JK Bowmaker (2001) ArticleTitleThe molecular basis for spectral tuning of rod visual pigments in deep-sea fish J Exp Biol 204 3333–3344

    Google Scholar 

  • M Illing LL Molday RS Molday (1997) ArticleTitleThe 220-kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily J Biol Chem 272 10303–10310

    Google Scholar 

  • K Inoue K Dewar N Katsanis LT Reiter ES Lander KL Devon DW Wyman JR Lupski B Birren (2001) ArticleTitleThe 1.4-Mb CMT1A duplication/HNPP deletion genomic region reveals unique genome architectural features and provides insights into the recent evolution of new genes Genome Res 11 1018–1033

    Google Scholar 

  • BJ Klevering A Blankenagel A Maugeri FPM Cremers CB Hoyng K Rohrschneider (2002) ArticleTitlePhenotypic spectrum of autosomal recessive cone-rod dystrophies caused by mutations in the ABCA4 (ABCR) gene Invest Ophthalmol Vis Sci 43 1980–1985

    Google Scholar 

  • RA Lewis NF Shroyer N Singh R Allikmets A Hutchinson Y Li JR Lupski M Leppert M Dean (1999) ArticleTitleGenotype/phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease Am J Hum Genet 64 422–434 Occurrence Handle1:CAS:528:DyaK1MXhslOltL4%3D Occurrence Handle9973280

    CAS  PubMed  Google Scholar 

  • A Martínez-Mir E Paloma R Allikmets C Ayuso T Rio Particledel M Dean L Vilageliu R González-Duarte S Balcells (1998) ArticleTitleRetinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR Nat Genet 18 11–12

    Google Scholar 

  • NL Mata RT Tzekov X Liu J Weng DG Birch GH Travis (2001) ArticleTitleDelayed dark-adaptation and lipofuscin accumulation in abcr+/− mice: Implications for involvement of ABCR in age-related macular degeneration Invest Ophthalmol Vis Sci 42 1685–1690

    Google Scholar 

  • NL Mata J Weng GH Travis (2000) ArticleTitleBiosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration Proc Natl Acad Sci USA 97 7154–7159

    Google Scholar 

  • A Maugeri MA Driel Particlevan DJR Pol Particlevan de BJ Klevering FJJ Haren Particlevan N Tijmes AAB Bergen K Rohrschneider A Blankenagel AJLG Pinckers N Dahl HG Brunner AF Deutman CB Hoyng FPM Cremers (1999) ArticleTitleThe 2588 G→C mutation in the ABCR gene is a mild frequent founder mutation in the Western European population and allows the classification of ABCR mutations in patients with Stargardt disease Am J Hum Genet 64 1024–1035 Occurrence Handle1:CAS:528:DyaK1MXkt1emsLw%3D Occurrence Handle10090887

    CAS  PubMed  Google Scholar 

  • A Maugeri BJ Klevering K Rohrschneider A Blankenagel HG Brunner AF Deutman CB Hoyng FPM Cremers (2000) ArticleTitleMutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy Am J Hum Genet 67 960–966 Occurrence Handle1:CAS:528:DC%2BD3cXnsVCgsLo%3D Occurrence Handle10958761

    CAS  PubMed  Google Scholar 

  • LL Molday AR Rabin RS Molday (2000) ArticleTitleABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy Nat Genet 25 257–258

    Google Scholar 

  • RS Molday (1998) ArticleTitlePhotoreceptor membrane proteins, phototransduction, and retinal degenerative diseases. The Friedenwald Lecture Invest Ophthalmol Vis Sci 39 2493–2513

    Google Scholar 

  • R Nielsen Z Yang (1998) ArticleTitleLikelihood models for detecting positively selected sites and applications to the HIV-1 envelope gene Genetics 148 929–936 Occurrence Handle1:CAS:528:DyaK1cXks1eitr8%3D Occurrence Handle9539414

    CAS  PubMed  Google Scholar 

  • E Paloma A Martínez-Mir L Vilageliu R Gonzàlez-Duarte S Balcells (2001) ArticleTitleSpectrum of ABCA4 (ABCR) gene mutations in Spanish patients with autosomal recessive macular dystrophies Hum Mutat 17 504–510

    Google Scholar 

  • M Papaioannou L Ocaka D Bessant N Lois A Bird A Payne S Bhattacharya (2000) ArticleTitleAn analysis of ABCR mutations in British patients with recessive retinal dystrophies Invest Ophthalmol Vis Sci 41 16–19

    Google Scholar 

  • DS Papermaster BG Scheider MA Zorn JP Kraehenbuhl (1978) ArticleTitleImmunocytochemical localization of a large intrinsic membrane protein to the incisures and margins of frog rod outer segment disks J Cell Biol 78 415–425

    Google Scholar 

  • A Rivera K White H Stöhr K Steiner N Hemmrich T Grimm B Jurklies B Lorenz HPN Scholl E Apfelstedt-Sylla BHF Weber (2000) ArticleTitleA comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration Am J Hum Genet 67 800–813 Occurrence Handle1:CAS:528:DC%2BD3cXnsVCgs78%3D Occurrence Handle10958763

    CAS  PubMed  Google Scholar 

  • N Saitou M Nei (1987) ArticleTitleThe neighbor-joining method: A new method for reconstructing phylogenetic trees Mol Biol Evol 4 406–425 Occurrence Handle1:STN:280:BieC1cbgtVY%3D Occurrence Handle3447015

    CAS  PubMed  Google Scholar 

  • NF Shroyer RA Lewis AN Yatsenko TG Wensel JR Lupski (2001) ArticleTitleCosegregation and functional analysis of mutant ABCR (ABCA4) alleles in families that manifest both Stargardt disease and age-related macular degeneration Hum Mol Genet 10 2671–2678 Occurrence Handle1:CAS:528:DC%2BD3MXptFGhur0%3D Occurrence Handle11726554

    CAS  PubMed  Google Scholar 

  • F Simonelli F Testa G Crecchio Particlede E Rinaldi A Hutchinson A Atkinson M Dean M D’Urso R Allikmets (2000) ArticleTitleNew ABCR mutations and clinical phenotype in Italian patients with Stargardt disease Invest Ophthalmol Vis Sci 41 892–897

    Google Scholar 

  • T Suárez SB Biswas EE Biswas (2002) ArticleTitleBiochemical defects in retina-specific human ATP binding cassette transporter nucleotide binding domain 1 mutants associated with macular degeneration J Biol Chem 277 21759–21767 Occurrence Handle1:CAS:528:DC%2BD38Xksl2js7w%3D Occurrence Handle11919200

    CAS  PubMed  Google Scholar 

  • H Sun RS Molday J Nathans (1999) ArticleTitleRetinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease J Biol Chem 274 8269–8281 Occurrence Handle1:CAS:528:DyaK1MXitFSrsLY%3D Occurrence Handle10075733

    CAS  PubMed  Google Scholar 

  • H Sun PM Smallwood J Nathans (2000) ArticleTitleBiochemical defects in ABCR protein variants associated with human retinopathies Nat Genet 26 242–246

    Google Scholar 

  • AR Webster E Héon AJ Lotery K Vandenburgh TL Casavant KT Oh G Beck GA Fishman BL Lam A Levin JR Heckenlively SG Jacobson RG Weleber VC Sheffield EM Stone (2001) ArticleTitleAn analysis of allelic variation in the ABCA4 gene Invest Ophthalmol Vis Sci 42 1179–1189

    Google Scholar 

  • J Weng NL Mata SM Azarian RT Tzekov DG Birch GH Travis (1999) ArticleTitleInsights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice Cell 98 13–23 Occurrence Handle1:CAS:528:DyaK1MXks1Kksbg%3D Occurrence Handle10412977

    CAS  PubMed  Google Scholar 

  • Z Yang (1997) ArticleTitlePAML: A program package for phylogenetic analysis by maximum likelihood Comput Appl Biosci 13 555–556 Occurrence Handle1:CAS:528:DyaK2sXntlGnu7s%3D Occurrence Handle9367129

    CAS  PubMed  Google Scholar 

  • Z Yang R Nielsen (1998) ArticleTitleSynonymous and nonsynonymous rate variation in nuclear genes of mammals J Mol Evol 46 409–418

    Google Scholar 

  • AN Yatsenko NF Shroyer RA Lewis JR Lupski (2001) ArticleTitleLate-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4) Hum Genet 108 346–355 Occurrence Handle1:CAS:528:DC%2BD3MXivVylsL4%3D Occurrence Handle11379881

    CAS  PubMed  Google Scholar 

  • AN Yatsenko NF Shroyer RA Lewis JR Lupski (2003) ArticleTitleAn ABCA4 genomic deletion in patients with Stargardt disease Hum Mutat 21 636–644

    Google Scholar 

Download references

Acknowledgments

A.N. Yatsenko was supported in part by the ARVO/Novartis Ophthalmics Research Fellowship Grant program. C.M. Zaremba is supported by a predoctoral training grant from the Howard Hughes Medical Institute (HHMI). The authors are grateful for the expertise in statistical analysis provided by Dr. C. Shaw, Department of Human Molecular Genetics, Baylor College of Medicine. This research was supported in part by the National Eye Institute, NIH Grants EY12505 and EY12163 to M.J. and EY13255 to J.R.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Lupski.

Additional information

Reviewing Editor: Dr. Peer Bork

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yatsenko, A.N., Wiszniewski, W., Zaremba, C.M. et al. Evolution of ABCA4 Proteins in Vertebrates. J Mol Evol 60, 72–80 (2005). https://doi.org/10.1007/s00239-004-0118-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0118-4

Keywords

Navigation