Skip to main content
Log in

Molecular Evolution in Large Genetic Networks: Does Connectivity Equal Constraint?

Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Genetic networks show a broad-tailed distribution of the number of interaction partners per protein, which is consistent with a power-law. It has been proposed that such broad-tailed distributions are observed because they confer robustness against mutations to the network. We evaluate this hypothesis for two genetic networks, that of the E. coli core intermediary metabolism and that of the yeast protein-interaction network. Specifically, we test the hypothesis through one of its key predictions: highly connected proteins should be more important to the cell and, thus, subject to more severe selective and evolutionary constraints. We find, however, that no correlation between highly connected proteins and evolutionary rate exists in the E. coli metabolic network and that there is only a weak correlation in the yeast protein-interaction network. Furthermore, we show that the observed correlation is function-specific within the protein-interaction network: only genes involved in the cell cycle and transcription show significant correlations. Our work sheds light on conflicting results by previous researchers by comparing data from multiple types of protein-interaction datasets and by using a closely related species as a reference taxon. The finding that highly connected proteins can tolerate just as many amino acid substitutions as other proteins leads us to conclude that power-laws in cellular networks do not reflect selection for mutational robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. H Akashi (2001) ArticleTitleGene expression and molecular evolution. Curr Opin Genet Dev 11 660–666 Occurrence Handle10.1016/S0959-437X(00)00250-1 Occurrence Handle1:CAS:528:DC%2BD3MXnslajtL0%3D Occurrence Handle11682310

    Article  CAS  PubMed  Google Scholar 

  2. R Albert H Jeong A-L Barabasi (2000) ArticleTitleError and attack tolerance of complex networks. Nature 406 378–382 Occurrence Handle10.1038/35019019

    Article  Google Scholar 

  3. SF Altschul TL Madden AA Schaffer JH Zhang Z Zhang W Miller DJ Lipman (1997) ArticleTitleGapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25 3389–3402 Occurrence Handle9254694

    PubMed  Google Scholar 

  4. A-L Barabasi R Albert (1999) ArticleTitleEmergence of scaling in random networks. Science 286 509–512 Occurrence Handle10.1126/science.286.5439.509

    Article  Google Scholar 

  5. US Bhalla R lyengar (1999) ArticleTitleEmergent properties of networks of biological signaling pathways. Science 283 381–387 Occurrence Handle1:CAS:528:DyaK1MXns1ektA%3D%3D Occurrence Handle9888852

    CAS  PubMed  Google Scholar 

  6. FR Blattner G Plunkett CA Bloch NT Perna V Burland M Riley J Collado-Vides JD Glasner CK Rode GF Mayhew J Gregor NW Davis HA Kirkpatrick MA Goeden DJ Rose B Mau Y Shao (1997) ArticleTitleThe complete genome sequence of Escherichia coli K-12. Science 277 1453–1462 Occurrence Handle1:CAS:528:DyaK2sXlvVGnu78%3D Occurrence Handle9278503

    CAS  PubMed  Google Scholar 

  7. GC Conant A Wagner (2002) ArticleTitleGenomeHistory: A software tool and its application to fully sequenced genomes. Nucleic Acids Res 30 3378–3386 Occurrence Handle10.1093/nar/gkf449 Occurrence Handle1:CAS:528:DC%2BD38XmtF2mtrg%3D Occurrence Handle12140322

    Article  CAS  PubMed  Google Scholar 

  8. DE Dykhuizen DL Hartl (1983) ArticleTitleFunctional effects of PGI allozymes in Escherichia coli. Genetics 105 1–18 Occurrence Handle1:CAS:528:DyaL3sXlvFWnsb8%3D Occurrence Handle6352406

    CAS  PubMed  Google Scholar 

  9. JS Edwards BO Palsson (1999) ArticleTitleSystems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem 274 17410–17416 Occurrence Handle10364169

    PubMed  Google Scholar 

  10. JS Edwards BO Palsson (2000) ArticleTitleThe Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 97 5528–5533 Occurrence Handle1:CAS:528:DC%2BD3cXjsVWms7g%3D Occurrence Handle10805808

    CAS  PubMed  Google Scholar 

  11. RD Fleischmann MD Adams O White et al. (1995) ArticleTitleWhole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269 496–512 Occurrence Handle7542800

    PubMed  Google Scholar 

  12. HB Fraser AE Hirsh LM Steinmetz C Scharfe MW Feldman (2002) ArticleTitleEvolutionary rate in the protein interaction network. Science 296 750–752 Occurrence Handle10.1126/science.1068696 Occurrence Handle1:CAS:528:DC%2BD38XjtlOntrc%3D Occurrence Handle11976460

    Article  CAS  PubMed  Google Scholar 

  13. HB Fraser DP Wall AE Hirsh (2003) ArticleTitleA simple dependence between protein evolution rate and the number of protein-protein interactions. BMC Evol Biol 3 11 Occurrence Handle10.1186/1471-2148-3-11 Occurrence Handle12769820

    Article  PubMed  Google Scholar 

  14. AC Gavin M Bosche R Krause et al. (2002) ArticleTitleFunctional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415 141–147 Occurrence Handle1:CAS:528:DC%2BD38XmsVCgtw%3D%3D Occurrence Handle11805826

    CAS  PubMed  Google Scholar 

  15. InstitutionalAuthorNameThe Gene Ontology Consortium (2000) ArticleTitleGene Ontology: Tool for the unification of biology. Nature Genet 25 25–29

    Google Scholar 

  16. A Goffeau BG Barrell H Bussey RW Davis B Dujon H Feldmann F Galibert JD Hoheisel C Jacq M Johnston EJ Louis HW Mewes Y Murakami P Philippsen H Tettelin SG Oliver (1996) ArticleTitleLife with 6000 genes. Science 274 563–567 Occurrence Handle10.1126/science.274.5287.546

    Article  Google Scholar 

  17. N Goldman Z Yang (1994) ArticleTitleA codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11 725–736 Occurrence Handle7968486

    PubMed  Google Scholar 

  18. LH Hartwell JJ Hopfield S Leibler AW Murray (1999) ArticleTitleFrom molecular to modular cell biology. Nature 402 C47–C52 Occurrence Handle10.1038/35011540 Occurrence Handle1:CAS:528:DyaK1MXnslKms70%3D Occurrence Handle10591225

    Article  CAS  PubMed  Google Scholar 

  19. Y Ho A Gruhler A Heilbut GD Bader et al. (2002) ArticleTitleSystematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415 180–183 Occurrence Handle1:CAS:528:DC%2BD38Xms1SnsA%3D%3D Occurrence Handle11805837

    CAS  PubMed  Google Scholar 

  20. LD Hurst NGC Smith (1999) ArticleTitleDo essential genes evolve slowly? Curr Biol 9 747–750 Occurrence Handle10.1016/S0960-9822(99)80334-0 Occurrence Handle1:CAS:528:DyaK1MXksFGltbs%3D Occurrence Handle10421576

    Article  CAS  PubMed  Google Scholar 

  21. T Ito T Chiba R Ozawa M Yoshida M Hattori Y Sakaki (2001) ArticleTitleA comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98 4569–4574 Occurrence Handle1:CAS:528:DC%2BD3MXjtVagtLc%3D Occurrence Handle11283351

    CAS  PubMed  Google Scholar 

  22. H Jeong B Tombor R Albert ZN Oltvai A-L Barabasi (2000) ArticleTitleThe large-scale organization of metabolic networks. Nature 407 651–654 Occurrence Handle1:CAS:528:DC%2BD3cXnsVOrsLs%3D Occurrence Handle11034217

    CAS  PubMed  Google Scholar 

  23. H Jeong SP Mason A-L Barabasi ZN Oltvai (2001) ArticleTitleLethality and centrality in protein networks. Nature 411 41–42 Occurrence Handle10.1038/35075138

    Article  Google Scholar 

  24. IK Jordan YI Wolf EV Koonin (2003a) ArticleTitleNo simple dependence between protein evolution rate and the number of protein-protein interactions: Only the most prolific interactors tend to evolve slowly. BMC Evol Biol 3 1

    Google Scholar 

  25. IK Jordan YI Wolf EV Koonin (2003b) ArticleTitleCorrection: No simple dependence between protein evolution rate and the number of protein-protein interactions: Only the most prolific interactors tend to evolve slowly. BMC Evol Biol 3 5

    Google Scholar 

  26. M Kellis N Patterson M Endrizzi B Birren ES Lander (2003) ArticleTitleSequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423 241–254 Occurrence Handle10.1038/nature01644 Occurrence Handle1:CAS:528:DC%2BD3sXjs1ynu78%3D Occurrence Handle12748633

    Article  CAS  PubMed  Google Scholar 

  27. M Kimura (1977) ArticleTitlePreponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267 275–276 Occurrence Handle1:STN:280:CSiC1M3jvFc%3D Occurrence Handle865622

    CAS  PubMed  Google Scholar 

  28. S Kumar S Subramanian (2002) ArticleTitleMutation rates in mammalian genomes. Proc Natl Acad Sci USA 99 803–808 Occurrence Handle10.1073/pnas.022629899 Occurrence Handle1:CAS:528:DC%2BD38Xht1Wis74%3D

    Article  CAS  Google Scholar 

  29. W-H Li (1997) Molecular evolution. Sinauer Associates Sunderland, MA

    Google Scholar 

  30. M Lynch JS Conery (2000) ArticleTitleThe evolutionary fate and consequences of duplicate genes. Science 290 1151–1155 Occurrence Handle10.1126/science.290.5494.1151 Occurrence Handle1:CAS:528:DC%2BD3cXotVChsb8%3D Occurrence Handle11073452

    Article  CAS  PubMed  Google Scholar 

  31. HW Mewes K Heumann A Kaps K Mayer F Pfeiffer S Stocker D Frishman (1999) ArticleTitleMIPS: A database for genomes and protein sequences. Nucleic Acids Res 27 44–48 Occurrence Handle1:CAS:528:DyaK1MXpsVGlug%3D%3D Occurrence Handle9847138

    CAS  PubMed  Google Scholar 

  32. HJ Morowitz (1992) Beginnings of cellular life. Yale University Press New Haven, CT

    Google Scholar 

  33. MD Rausher RE Miller P Tiffin (1999) ArticleTitlePatterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. Mol Biol Evol 16 266–274 Occurrence Handle1:CAS:528:DyaK1MXht1elt7o%3D Occurrence Handle10028292

    CAS  PubMed  Google Scholar 

  34. P Ross-Macdonald PSR Coelho T Roemer S Agarwal A Kumar R Jansen KH Cheung A Sheehan D Symoniatis L Umansky M Heldtman FK Nelson H Iwasaki K Hager M Gerstein P Miller GS Roeder M Snyder (1999) ArticleTitleLarge-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402 413–418 Occurrence Handle1:CAS:528:DyaK1MXnvVyku7c%3D Occurrence Handle10586881

    CAS  PubMed  Google Scholar 

  35. V Smith KN Chou D Lashkari D Botstein PO Brown (1996) ArticleTitleFunctional analysis of the genes of yeast chromosome V by genetic footprinting. Science 274 2069–2074 Occurrence Handle10.1126/science.274.5295.2069 Occurrence Handle1:CAS:528:DyaK2sXjtFaj Occurrence Handle8953036

    Article  CAS  PubMed  Google Scholar 

  36. RL Tatusov AR Mushegian P Bork NP Brown WS Hayes M Borodovsky KE Rudd EV Koonin (1996) ArticleTitleMetabolism and evolution of Haemophilus influenzae deduced from a whole-genome comparison with Escherichia coli. Curr Biol 6 279–291 Occurrence Handle1:CAS:528:DyaK28XhvFymurs%3D Occurrence Handle8805245

    CAS  PubMed  Google Scholar 

  37. JD Thompson DG Higgins TJ Gibson (1994) ArticleTitleClustal-W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 4673–4680 Occurrence Handle7984417

    PubMed  Google Scholar 

  38. P Uetz L Giot G Cagney TA Mansfield RS Judson JR Knight D Lockshon V Narayan M Srinivasan P Pochart A Qureshi-Emili Y Li B Godwin D Conover T Kalbfleisch G Vijayadamodar MJ Yang M Johnston S Fields JM Rothberg (2000) ArticleTitleA comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403 623–627 Occurrence Handle1:CAS:528:DC%2BD3cXht1Oqsr0%3D Occurrence Handle10688190

    CAS  PubMed  Google Scholar 

  39. C von Mering R Krause B Snel M Cornell SG Oliver S Fields P Bork (2002) ArticleTitleComparative assessment of large-scale data sets of protein-protein interactions. Nature 417 399–403 Occurrence Handle12000970

    PubMed  Google Scholar 

  40. A Wagner (2000) ArticleTitleMutational robustness in genetic networks of yeast. Nature Genet 24 355–361 Occurrence Handle10.1038/74174 Occurrence Handle1:CAS:528:DC%2BD3cXisVCjsb8%3D Occurrence Handle10742097

    Article  CAS  PubMed  Google Scholar 

  41. A Wagner (2001) ArticleTitleThe yeast protein interaction network evolves rapidly and contains few duplicate genes. Mol Biol Evol 18 1283–1292 Occurrence Handle1:CAS:528:DC%2BD3MXltVGru74%3D Occurrence Handle11420367

    CAS  PubMed  Google Scholar 

  42. A Wagner (2002) ArticleTitleEstimating coarse gene network structure from large-scale gene perturbation data. Genome Res 12 309–315 Occurrence Handle10.1101/gr.193902 Occurrence Handle1:CAS:528:DC%2BD38XhtlKks70%3D Occurrence Handle11827950

    Article  CAS  PubMed  Google Scholar 

  43. A Wagner D Fell (2001) ArticleTitleThe small world inside large metabolic networks. Proc Roy Soc Lond Ser B 280 1803–1810 Occurrence Handle10.1098/rspb.2001.1711

    Article  Google Scholar 

  44. DJ Watts (1999) Small worlds. Princeton University Press Princeton, NJ

    Google Scholar 

  45. DJ Watts SH Strogatz (1998) ArticleTitleCollective dynamics of small-world networks. Nature 393 440–442 Occurrence Handle10.1038/30918

    Article  Google Scholar 

  46. EJB Williams LD Hurst (2000) ArticleTitleThe proteins of linked genes evolve at similar rates. Nature 407 900–903 Occurrence Handle1:CAS:528:DC%2BD3cXns1Omtbk%3D Occurrence Handle11057667

    CAS  PubMed  Google Scholar 

  47. EA Winzeler DD Shoemaker A Astromoff et al. (1999) ArticleTitleFunctional characterization of the S. cerevisiae genome by gene deletion ad parallel analysis. Science 285 901–906 Occurrence Handle10.1126/science.285.5429.901 Occurrence Handle1:CAS:528:DyaK1MXltVelsbo%3D Occurrence Handle10436161

    Article  CAS  PubMed  Google Scholar 

  48. V Wood R Gwilliam MA Rajandream et al. (2002) ArticleTitleThe genome sequence of Schizosaccharomyces pombe. Nature 415 871–880 Occurrence Handle1:CAS:528:DC%2BD38Xhs1ygtbk%3D Occurrence Handle11859360

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.W.H. thanks M. Rausher, M. Rockman, M. Rutter, A. Sweigart, M. Uyenoyama, and R. Zufall for comments and suggestions; an NSF Doctoral Dissertation Improvement Grant provided support. G.C.C. is supported by the Department of Energy’s Computational Sciences Graduate Fellowship program, administered by the Krell Institute. A.W. acknowledges financial support through NIH Grant GM63882 and the Santa Fe Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, M.W., Conant, G.C. & Wagner, A. Molecular Evolution in Large Genetic Networks: Does Connectivity Equal Constraint? . J Mol Evol 58, 203–211 (2004). https://doi.org/10.1007/s00239-003-2544-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-2544-0

Keywords

Navigation