Skip to main content
Log in

The Absence of TIR-Type Resistance Gene Analogues in the Sugar Beet (Beta vulgaris L.) Genome

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The majority of known plant resistance genes encode proteins with conserved nucleotide-binding sites and leucine-rich repeats (NBS-LRR). Degenerate primers based on conserved NBS-LRR motifs were used to amplify analogues of resistance genes from the dicot sugar beet. Along with a cDNA library screen, the PCR screen identified 27 genomic and 12 expressed NBS-LRR RGAs (nlRGAs) sugar beet clones. The clones were classified into three subfamilies based on nucleotide sequence identity. Sequence analyses suggested that point mutations, such as nucleotide substitutions and insertion/deletions, are probably the primary source of diversity of sugar beet nlRGAs. A phylogenetic analysis revealed an ancestral relationship among sugar beet nlRGAs and resistance genes from various angiosperm species. One group appeared to share the same common ancestor as Prf, Rx, RPP8, and Mi, whereas the second group originated from the ancestral gene from which 12C1, Xa1, and Cre3 arose. The predicted protein products of the nlRGAs isolated in this study are all members of the non-TIR-type resistance gene subfamily and share strong sequence and structural similarities with non-TIR-type resistance proteins. No representatives of the TIR-type RGAs were detected either by PCR amplification using TIR type-specific primers or by in silico screening of more than 16,000 sugar beet ESTs. These findings suggest that TIR type of RGAs is absent from the sugar beet genome. The possible evolutionary loss of TIR type RGAs in the sugar beet is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. MG Aarts B Hekkert EB Holub JL Beynon WJ Stiekema A Pereira (1998a) ArticleTitleIdentification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact 11 251–258 Occurrence Handle1:CAS:528:DyaK1cXitVGqsLc%3D

    CAS  Google Scholar 

  2. N Aarts M Metz E Holub BJ Staskawicz MJ Daniels JE Parker (1998b) ArticleTitleDifferent requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signalling pathways in Arabidopsis. Proc Natl Acad Sci USA 95 10306–10311 Occurrence Handle1:CAS:528:DyaK1cXlsFGgsb4%3D

    CAS  Google Scholar 

  3. SF Altschul TL Madden AA Schaffer J Zhang Z Zhang W Miller DJ Lipman (1997) ArticleTitleGapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25 3389–3402 Occurrence Handle9254694

    PubMed  Google Scholar 

  4. L Aravind VM Dixit EV Koonin (1999) ArticleTitleThe domains of death: Evolution of the apoptosis machinery. Trends Biochem Sci 24 47–53 Occurrence Handle10.1016/S0968-0004(98)01341-3 Occurrence Handle1:CAS:528:DyaK1MXltFChu7g%3D Occurrence Handle10098397

    Article  CAS  PubMed  Google Scholar 

  5. K Arumuganathan ED Earle (1991) ArticleTitleNuclear DNA content of some important plant species. Plant Mol Biol Rep 9 208–218 Occurrence Handle1:CAS:528:DyaK38XhslSjurY%3D

    CAS  Google Scholar 

  6. JF Bai LA Pennill J Ning SW Lee R Jegadeesan CR Webb BY Zhao Q Sun JC Nelson JE Leach SH Hulbert (2002) ArticleTitleDiversity in nucleotide binding site-Leucine-rich repeat genes in cereals. Genome Res 12 1871–1884 Occurrence Handle10.1101/gr.454902 Occurrence Handle1:CAS:528:DC%2BD38XpsVOqtbc%3D Occurrence Handle12466291

    Article  CAS  PubMed  Google Scholar 

  7. B Baker P Zambryski B Staskawicz SP Dinesh-Kumar (1997) ArticleTitleSignalling in plant-microbe interactions. Science 276 726–733 Occurrence Handle1:CAS:528:DyaK2sXivFOltLg%3D Occurrence Handle9115193

    CAS  PubMed  Google Scholar 

  8. A Bendahmane K Kanyuka DC Baulcombe (1999) ArticleTitleThe Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11 781–792 Occurrence Handle1:CAS:528:DyaK1MXjvVWrtLc%3D Occurrence Handle10330465

    CAS  PubMed  Google Scholar 

  9. HC Bold (1977) The plant kingdom. Prentice-Hall Englewood Cliffs, NJ

    Google Scholar 

  10. SB Cannon H Zhu AM Baumgarten R Spangler G May DR Cook ND Young (2002) ArticleTitleDiversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol 54 548–562 Occurrence Handle10.1007/s00239-001-0057-2 Occurrence Handle1:CAS:528:DC%2BD38Xjt1Ggu70%3D Occurrence Handle11956693

    Article  CAS  PubMed  Google Scholar 

  11. KS Century AD Shapiro PP Repetti D Dahlbeck E Holub BJ Staskawicz (1997) ArticleTitle NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278 1963–1965 Occurrence Handle1:CAS:528:DyaK2sXotVClt78%3D Occurrence Handle9395402

    CAS  PubMed  Google Scholar 

  12. JL Dangl JD Jones (2001) ArticleTitlePlant pathogens and integrated defence responses to infection. Nature 411 826–833 Occurrence Handle1:CAS:528:DC%2BD3MXksF2gu74%3D Occurrence Handle11459065

    CAS  PubMed  Google Scholar 

  13. JG Ellis GJ Lawrence JE Luck PN Dodds (1999) ArticleTitleIdentification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11 495–506 Occurrence Handle1:CAS:528:DyaK1MXitlehsLo%3D Occurrence Handle10072407

    CAS  PubMed  Google Scholar 

  14. R Fluhr (2001) ArticleTitleSentinels of disease. Plant resistance genes. Plant Physiol 127 1367–1374 Occurrence Handle1:CAS:528:DC%2BD38XjtVWiug%3D%3D Occurrence Handle11743075

    CAS  PubMed  Google Scholar 

  15. MR Grant L Godiard E Straube T Ashfield J Lewald A Sattler RW Innes JL Dangl (1995) ArticleTitleStructure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269 843–846 Occurrence Handle1:CAS:528:DyaK2MXnsVagsrg%3D Occurrence Handle7638602

    CAS  PubMed  Google Scholar 

  16. KE Hammond-Kosack JD Jones (1997) ArticleTitlePlant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48 575–607 Occurrence Handle1:CAS:528:DyaK2sXjs1elsr0%3D

    CAS  Google Scholar 

  17. R Herwig B Schulz B Weisshaar S Hennig M Steinfath M Drungowski D Stahl W Wruck A Menze J O’Brien H Lehrach U Radelof (2002) ArticleTitleConstruction of a “unigene” cDNA clone set by oligonucleotide fingerprinting allows access to 25,000 potential sugar beet genes. Plant J 32 845–857 Occurrence Handle10.1046/j.1365-313X.2002.01457.x Occurrence Handle12472698

    Article  PubMed  Google Scholar 

  18. T Horng GM Barton R Medzhitov (2001) ArticleTitleTIRAP: An adapter molecule in the Toll signalling pathway. Nat Immunol 2 835–841 Occurrence Handle10.1038/ni0901-835 Occurrence Handle1:CAS:528:DC%2BD3MXmsFehtrc%3D Occurrence Handle11526399

    Article  CAS  PubMed  Google Scholar 

  19. S Hunger G Di Gaspero S Mohring D Bellin R Schafer-Pregl DC Borchardt CE Durel M Werber B Weisshaar F Salamini K Schneider (2003) ArticleTitleIsolation and linkage analysis of expressed disease-resistance gene analogues of sugar beet (Beta vulgaris L.). Genome 46 70–82 Occurrence Handle10.1139/g02-106 Occurrence Handle12669798

    Article  PubMed  Google Scholar 

  20. J Jebanathirajah S Peri A Pandey (2002) ArticleTitleToll and interleukin-1 receptor (TIR) domain-containing proteins in plants: A genomic perspective. Trends Plant Sci 7 388–391 Occurrence Handle10.1016/S1360-1385(02)02309-9 Occurrence Handle1:CAS:528:DC%2BD38XntVWnu7s%3D Occurrence Handle12234729

    Article  CAS  PubMed  Google Scholar 

  21. DA Jones JDG Jones (1997) ArticleTitleThe role of leucine-rich repeat proteins in plant defences. Adv Bot Res 24 90–167

    Google Scholar 

  22. D Leister J Kurth DA Laurie M Yano T Sasaki K Devos A Graner P Schulze-Lefert (1998) ArticleTitleRapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA 95 370–375 Occurrence Handle1:CAS:528:DyaK1cXjtl2gsg%3D%3D Occurrence Handle9419382

    CAS  PubMed  Google Scholar 

  23. A Lupas (1996) ArticleTitleCoiled coils: New structures and new functions. Trends Biochem Sci 21 375–382 Occurrence Handle1:CAS:528:DyaK28XmsleitLs%3D Occurrence Handle8918191

    CAS  PubMed  Google Scholar 

  24. JM McDowell M Dhandaydham TA Long MG Aarts S Goff EB Holub JL Dangl (1998) ArticleTitleIntragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10 1861–1874 Occurrence Handle9811794

    PubMed  Google Scholar 

  25. BC Meyers AW Dickerman RW Michelmore S Sivaramakrishnan BW Sobral ND Young (1999) ArticleTitlePlant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20 317–332 Occurrence Handle10.1046/j.1365-313X.1999.00606.x Occurrence Handle1:CAS:528:DC%2BD3cXjsF2kug%3D%3D Occurrence Handle10571892

    Article  CAS  PubMed  Google Scholar 

  26. RW Michelmore BC Meyers (1998) ArticleTitleClusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8 1113–1130 Occurrence Handle1:CAS:528:DyaK1cXotVWhurg%3D Occurrence Handle9847076

    CAS  PubMed  Google Scholar 

  27. SB Milligan J Bodeau J Yaghoobi I Kaloshian P Zabel VM Williamson (1998) ArticleTitleThe root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10 1307–1319 Occurrence Handle1:CAS:528:DyaK1cXls1Sis7s%3D Occurrence Handle9707531

    CAS  PubMed  Google Scholar 

  28. L Noel TL Moores EA van Der Biezen M Parniske MJ Daniels JE Parker JD Jones (1999) ArticleTitlePronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11 2099–2112 Occurrence Handle10559437

    PubMed  Google Scholar 

  29. S Noir MC Combes F Anthony P Lashermes (2001) ArticleTitleOrigin, diversity and evolution of NBS-type disease-resistance gene homologues in coffee trees (Coffea L.). Mol Genet Genomics 265 654–662 Occurrence Handle10.1007/s004380100459 Occurrence Handle1:CAS:528:DC%2BD3MXlsV2gurc%3D Occurrence Handle11459185

    Article  CAS  PubMed  Google Scholar 

  30. N Ori Y Eshed I Paran G Presting D Aviv S Tanksley D Zamir R Fluhr (1997) ArticleTitleThe I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell 9 521–532 Occurrence Handle1:CAS:528:DyaK2sXivFCltbw%3D Occurrence Handle9144960

    CAS  PubMed  Google Scholar 

  31. RD Page (1996) ArticleTitleTree View: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12 357–358 Occurrence Handle1:STN:280:ByiD2MfgtlA%3D Occurrence Handle8902363

    CAS  PubMed  Google Scholar 

  32. Q Pan J Wendel R Fluhr (2000a) ArticleTitleDivergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50 203–213 Occurrence Handle1:CAS:528:DC%2BD3cXivVKgt7k%3D

    CAS  Google Scholar 

  33. Q Pan YS Liu O Budai-Hadrian M Sela L Carmel-Goren D Zamir R Fluhr (2000b) ArticleTitleComparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155 309–322 Occurrence Handle1:CAS:528:DC%2BD3cXjslKhtL0%3D

    CAS  Google Scholar 

  34. J Park K Karplus C Barrett R Hughey D Haussler T Hubbard C Chothia (1998) ArticleTitleSequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods. J Mol Biol 284 1201–1210 Occurrence Handle10.1006/jmbi.1998.2221 Occurrence Handle1:CAS:528:DyaK1MXivFyrsg%3D%3D Occurrence Handle9837738

    Article  CAS  PubMed  Google Scholar 

  35. JE Parker EB Holub LN Frost A Falk ND Gunn MJ Daniels (1996) ArticleTitleCharacterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8 2033–2046

    Google Scholar 

  36. MI Rivkin CE Vallejos PE McClean (1999) ArticleTitleDisease-resistance related sequences in common bean. Genome 42 41–47 Occurrence Handle1:CAS:528:DyaK1MXhsVyqsbs%3D Occurrence Handle10208000

    CAS  PubMed  Google Scholar 

  37. SO Rogers AJ Bendich (1985) ArticleTitleExtraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5 69–76 Occurrence Handle1:CAS:528:DyaL2MXlvFalsrk%3D

    CAS  Google Scholar 

  38. PC Ronald (1998) ArticleTitleResistance gene evolution. Curr Opin Plant Biol 1 294–298

    Google Scholar 

  39. N Saitou M Nei (1987) ArticleTitleThe neighbor-joining method: A new method for reconstructing phylogenetic tree. Mol Biol Evol 4 406–425 Occurrence Handle1:STN:280:BieC1cbgtVY%3D Occurrence Handle3447015

    CAS  PubMed  Google Scholar 

  40. JM Salmeron GE Oldroyd CM Rommens SR Scofield HS Kim DT Lavelle D Dahlbeck BJ Staskawicz (1996) ArticleTitleTomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86 123–133 Occurrence Handle1:CAS:528:DyaK28XktlGnsbs%3D Occurrence Handle8689679

    CAS  PubMed  Google Scholar 

  41. F Sanger S Nicklen AR Coulson (1977) ArticleTitleDNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74 5463–5467 Occurrence Handle271968

    PubMed  Google Scholar 

  42. KA Shen BC Meyers MN Islam-Faridi DB Chin DM Stelly RW Michelmore (1998) ArticleTitleResistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact 11 815–823 Occurrence Handle1:CAS:528:DyaK1cXkslWht7k%3D Occurrence Handle9675895

    CAS  PubMed  Google Scholar 

  43. E Speulman D Bouchez EB Holub JL Beynon (1998) ArticleTitleDisease resistance gene homologs correlate with disease resistance loci of Arabidopsis thaliana. Plant J 14 467–474 Occurrence Handle1:CAS:528:DyaK1cXkt1Khtbc%3D Occurrence Handle9670562

    CAS  PubMed  Google Scholar 

  44. EA Stahl G Dwyer R Mauricio M Kreitman J Bergelson (1999) ArticleTitleDynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400 667–671 Occurrence Handle1:CAS:528:DyaK1MXlsVCktb8%3D Occurrence Handle10458161

    CAS  PubMed  Google Scholar 

  45. JD Thompson DG Higgins TJ Gibson (1994) ArticleTitleCLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 4673–4680 Occurrence Handle7984417

    PubMed  Google Scholar 

  46. GM Timmerman-Vaughan TJ Frew N Weeden (2000) ArticleTitleCharacterization and linkage mapping of R-gene analogous DNA sequences in pea (Pisum sativum L.). Theor Appl Genet 101 241–247 Occurrence Handle1:CAS:528:DC%2BD3cXlvVyksbg%3D

    CAS  Google Scholar 

  47. TW Traut (1994) ArticleTitleThe functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur J Biochem 222 9–19 Occurrence Handle1:CAS:528:DyaK2cXktVajtrY%3D Occurrence Handle8200357

    CAS  PubMed  Google Scholar 

  48. EA van der Biezen JD Jones (1998) ArticleTitleThe NB-ARC domain: A novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8 226–227

    Google Scholar 

  49. der van EA Biezen J Sun MJ Coleman MJ Bibb JD Jones (2000) ArticleTitle Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signalling. Proc Natl Acad Sci USA 97 3747–3752 Occurrence Handle10.1073/pnas.060392397 Occurrence Handle10725385

    Article  PubMed  Google Scholar 

  50. EA van der Vossen JN van der Voort K Kanyuka A Bendahmane H Sandbrink DC Baulcombe J Bakker WJ Stiekema RM Klein-Lankhorst (2000) ArticleTitleHomologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: A virus and a nematode. Plant J 23 567–576 Occurrence Handle10972883

    PubMed  Google Scholar 

  51. ZX Wang M Yano U Yamanouchi M Iwamoto L Monna H Hayasaka Y Katayose T Sasaki (1999) ArticleTitleThe Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19 55–64 Occurrence Handle10.1046/j.1365-313X.1999.00498.x Occurrence Handle10417726

    Article  PubMed  Google Scholar 

  52. GK Wong J Wang L Tao J Tan J Zhang DA Passey J Yu (2002) ArticleTitleCompositional gradients in Gramineae genes. Genome Res 12 851–856 Occurrence Handle10.1101/gr.189102 Occurrence Handle1:CAS:528:DC%2BD38Xks12hsr8%3D Occurrence Handle12045139

    Article  CAS  PubMed  Google Scholar 

  53. J Yu S Hu J Wang et al. (2002) ArticleTitleA draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296 79–92 Occurrence Handle1:CAS:528:DC%2BD38XivVSqtr8%3D Occurrence Handle11935017

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the EU (FAIR6-CT08-4235) and the DFG (CA220/2-2). Dr. Fan Longjian thanks the Christian-Albrechts-University, Kiel, Germany for travel grants. We also thank Ms. C. Thiele for technical assistance and Dr. Nikki LeBrasseur for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daguang Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y., Fan, L., Thurau, T. et al. The Absence of TIR-Type Resistance Gene Analogues in the Sugar Beet (Beta vulgaris L.) Genome . J Mol Evol 58, 40–53 (2004). https://doi.org/10.1007/s00239-003-2524-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-2524-4

Keywords

Navigation