The Universal Ancestor and the Ancestor of Bacteria Were Hyperthermophiles


The definition of the node of the last universal common ancestor (LUCA) is justified in a topology of the unrooted universal tree. This definition allows previous analyses based on paralogous proteins to be extended to orthologous ones. In particular, the use of a thermophily index (based on the amino acids’ propensity to enter the [hyper] thermophile proteins more frequently) and its correlation with the optimal growth temperature of the various organisms allow inferences to be made on the habitat in which the LUCA lived. The reconstruction of ancestral sequences by means of the maximum likelihood method and their attribution to the set of mesophilic or hyperthermophilic sequences have led to the following conclusions: the LUCA was a hyperthermophile “organism,” as were the ancestors of the Archaea and Bacteria domains, while the ancestor of the Eukarya domain was a mesophile. These conclusions are independent of the presence of hyperthermophile bacteria in the sample of sequences used in the analysis and are therefore independent of whether or not these are the first lines of divergence in the Bacteria domain, as observed in the topology of the universal tree of ribosomal RNA. These conclusions are thus more easily understood under the hypothesis that the origin of life took place at a high temperature.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2


  1. 1

    L Achenbach-Richter R Gupta KO Stetter CR Woese (1987) ArticleTitleWere the original eubacteria thermophiles? Syst Appl Microbiol 9 34–39 Occurrence Handle1:STN:280:DC%2BD3MnmtVKmuw%3D%3D Occurrence Handle11542087

    CAS  PubMed  Google Scholar 

  2. 2

    SF Altschul TL Madden AA Schaffer J Zhang Z Zhang W Miller DJ Lipman (1997) ArticleTitleGapped BLAST ans PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25 3389–3402 Occurrence Handle9254694

    PubMed  Google Scholar 

  3. 3

    M Bocchetta S Gribaldo A Sanagelantoni P Cammarano (2000) ArticleTitlePhylogenetic depth of the bacterial genera Aquifex and Thermotoga inferrred from analysis of ribosomal protein, elongation factor, and RNA polymerase subunit sequences. J Mol Evol 50 366–380 Occurrence Handle1:CAS:528:DC%2BD3cXivFyjur0%3D Occurrence Handle10795828

    CAS  PubMed  Google Scholar 

  4. 4

    C Brochier H Philippe (2002) ArticleTitleA non-hyperthermophilic ancestor for Bacteria. Nature 417 244 Occurrence Handle10.1038/417244a Occurrence Handle1:CAS:528:DC%2BD38Xjs1agtrs%3D Occurrence Handle12015592

    Article  CAS  PubMed  Google Scholar 

  5. 5

    JR Brown CJ Douady MJ Italia WE Marshall JM Stanhope (2001) ArticleTitleUniversal trees based on large combined protein sequence data sets. Nat Genet 28 281–285 Occurrence Handle10.1038/90129 Occurrence Handle1:CAS:528:DC%2BD3MXltFSmurw%3D Occurrence Handle11431701

    Article  CAS  PubMed  Google Scholar 

  6. 6

    V Daubin M Gouy G Perrière (2001) ArticleTitleBacterial phylogeny using supertree approach. Genome Inform Ser Worshop Genome Inform 12 155–164 Occurrence Handle1:CAS:528:DC%2BD38XkvV2rt7Y%3D

    CAS  Google Scholar 

  7. 7

    M Di Giulio (2000a) ArticleTitleThe universal ancestor lived in a thermophilic or hyperthermophilic environment. J Theor Biol 203 203–213 Occurrence Handle1:CAS:528:DC%2BD3cXhs12hsLk%3D

    CAS  Google Scholar 

  8. 8

    M Di Giulio (2000b) ArticleTitleThe late stage of genetic code structuring took place at a high temperature. Gene 261 189–195 Occurrence Handle1:CAS:528:DC%2BD3MXmvF2ltA%3D%3D

    CAS  Google Scholar 

  9. 9

    M Di Giulio (2001) ArticleTitleThe universal ancestor was a thermophile or a hyperthermophile. Gene 281 11–17 Occurrence Handle10.1016/S0378-1119(01)00781-8 Occurrence Handle1:CAS:528:DC%2BD3MXptFelsL8%3D Occurrence Handle11750123

    Article  CAS  PubMed  Google Scholar 

  10. 10

    M Di Giulio (2003a) ArticleTitleThe universal ancestor was a thermophile or a hyperthermophile: tests and further evidence. J Theor Biol 221 425–436

    Google Scholar 

  11. 11

    M Di Giulio (2003b) ArticleTitleThe ancestor of the Bacteria domain was a hyperthermophile. J Theor Biol 224 277–283 Occurrence Handle1:CAS:528:DC%2BD3sXms1yjsb4%3D

    CAS  Google Scholar 

  12. 12

    P Forterre (1995) ArticleTitleThermoreduction, a hypothesis for the origin of prokaryotes. CR Acad Sci Paris 318 415–422 Occurrence Handle1:CAS:528:DyaK2MXmslSgsbk%3D

    CAS  Google Scholar 

  13. 13

    P Forterre (1998) Was our ancestor actually hyperthermophile? J Wiegel M Adams (Eds) Thermophiles and the origin of life. Taylor & Francis London 137–146

    Google Scholar 

  14. 14

    P Forterre (2001) ArticleTitleGenomics and early cellular evolution. The origin of the DNA world. CR Acad Sci Paris 324 1067–1076 Occurrence Handle10.1016/S0764-4469(01)01403-2 Occurrence Handle1:CAS:528:DC%2BD3MXpt1altL4%3D

    Article  CAS  Google Scholar 

  15. 15

    P Forterre (2002) ArticleTitleThe origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5 525–532 Occurrence Handle10.1016/S1369-5274(02)00360-0 Occurrence Handle1:CAS:528:DC%2BD38Xnt1Ggu7o%3D Occurrence Handle12354562

    Article  CAS  PubMed  Google Scholar 

  16. 16

    P Forterre C Bouthier De La Tour H Philippe M Duguet (2000) ArticleTitleReverse gyrase from hyperthermophiles: Probable transfer of a thermoadaptation trait from archaea to bacetria. Trends Genet 16 152–154 Occurrence Handle10.1016/S0168-9525(00)01980-6 Occurrence Handle1:CAS:528:DC%2BD3cXit1Sqsb4%3D Occurrence Handle10729828

    Article  CAS  PubMed  Google Scholar 

  17. 17

    N Galtier JR Lobry (1997) ArticleTitleRelationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol 44 632–636 Occurrence Handle1:CAS:528:DyaK2sXjslGqsbc%3D Occurrence Handle9169555

    CAS  PubMed  Google Scholar 

  18. 18

    N Galtier N Tourasse M Gouy (1999) ArticleTitleA nonhyperthermophilic common ancestor to extant life forms. Science 283 220–221 Occurrence Handle10.1126/science.283.5399.220 Occurrence Handle1:CAS:528:DyaK1MXjtlentA%3D%3D Occurrence Handle9880254

    Article  CAS  PubMed  Google Scholar 

  19. 19

    N Glansdorff (2000) ArticleTitleAbout the last common ancestor, the universal life-tree and lateral gene transfer: a reappraisal. Mol Microbiol 38 177–185 Occurrence Handle10.1046/j.1365-2958.2000.02126.x Occurrence Handle1:CAS:528:DC%2BD3cXotVGqtrc%3D Occurrence Handle11069646

    Article  CAS  PubMed  Google Scholar 

  20. 20

    MB Jacobs MJ Gerstein (1960) Handbook of microbiology. van Nostrand London

    Google Scholar 

  21. 21

    NG Holm (1992) ArticleTitleMarine hydrothermal systems and the origin of life. Origins Life Evol Biosph 22 1–241 Occurrence Handle1:CAS:528:DyaF3MXivVeltg%3D%3D

    CAS  Google Scholar 

  22. 22

    P Lopez-Garcia D Moreira (1998) ArticleTitleMetabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci 24 88–93 Occurrence Handle10.1016/S0968-0004(98)01342-5

    Article  Google Scholar 

  23. 23

    JL Maidak GJ Olsen N Larsen R Overbeek MJ McCaughey CR Woese (1997) ArticleTitleThe RDP (ribosomal database project). Nucleic Acids Res 25 109–110 Occurrence Handle9016515

    PubMed  Google Scholar 

  24. 24

    W Martin M Hoffmeister C Rotte K Henze (2001) ArticleTitleAn overview of endosymbiotic models for the origin of eukaryotes, their ATP-producing organelles mitocondria and hydrogenosomes, and their heterotrophic lifestyle. Biol Chem 382 1521–1539 Occurrence Handle1:CAS:528:DC%2BD38XktlOntQ%3D%3D Occurrence Handle11767942

    CAS  PubMed  Google Scholar 

  25. 25

    O Matte-Tailliez C Brochier P Forterre H Philippe (2002) ArticleTitleArchaeal phylogeny based on ribosomal proteins. Mol Biol Evol 19 631–639 Occurrence Handle1:CAS:528:DC%2BD38XjsFakurs%3D Occurrence Handle11961097

    CAS  PubMed  Google Scholar 

  26. 26

    EG Nisbet NH Sleep (2001) ArticleTitleThe habitat and nature of early life. Nature 409 1083–1091 Occurrence Handle1:STN:280:DC%2BD3M7lvFKjtw%3D%3D Occurrence Handle11234022

    CAS  PubMed  Google Scholar 

  27. 27

    GJ Olsen CR Woese R Overbeek (1994) ArticleTitleThe winds of (evolutionary) change: breathing new life into microbiology. J Bacter 176 1–6 Occurrence Handle1:STN:280:ByuC3M%2FitFY%3D Occurrence Handle8282683

    CAS  PubMed  Google Scholar 

  28. 28

    NR Pace (1991) ArticleTitleOrigin of life—Facing up to the physical setting. Cell 65 531–533 Occurrence Handle1:CAS:528:DyaK3MXktVehu7s%3D Occurrence Handle1709590

    CAS  PubMed  Google Scholar 

  29. 29

    Nr Pace GJ Olsen CR Woese (1986) ArticleTitleRibosomal RNA phylogeny and the primary lines of evolutionary descent. Cell 45 325–326 Occurrence Handle1:CAS:528:DyaL28XktVahtbg%3D Occurrence Handle3084106

    CAS  PubMed  Google Scholar 

  30. 30

    JT Staley MP Bryant N Plennig JG Holt (1984) Bergey’s manual of systematic (WR Hensyl, ed), Vol 3. Lippincott Williams & Wilkins Philadelphia

    Google Scholar 

  31. 31

    KO Stetter (1995) ArticleTitleMicrobial life in hyperthermal environments. ASM News 61 285–290

    Google Scholar 

  32. 32

    DL Swofford (1993) PAUP: Phylogenetic analysis using parsimony, version 3.1.1. Laboratory of Molecular Systematics, Smithsonian Institutions Washington, DC

    Google Scholar 

  33. 33

    DL Swofford (1998) PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b10 (PPC). Sinauer Associates Sunderland, MA

    Google Scholar 

  34. 34

    JD Thimpson TJ Gibson F Plewniak F Jeanmougin DG Higgins (1997) ArticleTitleThe CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 4876–4882 Occurrence Handle1:CAS:528:DyaK1cXntFyntQ%3D%3D Occurrence Handle9396791

    CAS  PubMed  Google Scholar 

  35. 35

    G Wachtershauser (1988) ArticleTitleBefore enzymes and templates: Theory of surface metabolism. Microbiol Rev 52 452–484 Occurrence Handle1:STN:280:BiaC1c7jsVM%3D Occurrence Handle3070320

    CAS  PubMed  Google Scholar 

  36. 36

    G Wachtershauser (1998) The case for a hyperthermophilic, chemolithoautotrophic origin of life in an iron-sulfur world. J Weigel MWW Adams (Eds) Thermophiles: The keys to molecular evolution and the origin of life? Taylor & Francis London 47–57

    Google Scholar 

  37. 37

    J Wiegel MWW Adams (Eds) (1998) Thermophiles: The keys to molecular evolution and the origin of life? Taylor & Francis London

    Google Scholar 

  38. 38

    CR Woese (1987) ArticleTitleBacterial evolution. Microbiol Rev 51 221–271 Occurrence Handle2439888

    PubMed  Google Scholar 

  39. 39

    CR Woese (1998) ArticleTitleThe universal ancestor. Proc Natl Acad Sci USA 95 6854–6859 Occurrence Handle1:CAS:528:DyaK1cXjslynu7w%3D Occurrence Handle9618502

    CAS  PubMed  Google Scholar 

  40. 40

    CR Woese (2000) ArticleTitleInterpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97 8392–8396 Occurrence Handle1:CAS:528:DC%2BD3cXlt1Ggtbc%3D Occurrence Handle10900003

    CAS  PubMed  Google Scholar 

  41. 41

    CR Woese (2002) ArticleTitleOn the evolution of cells. Proc Natl Acad Sci USA 99 8742–8747 Occurrence Handle10.1073/pnas.132266999 Occurrence Handle1:CAS:528:DC%2BD38XltF2hsbc%3D Occurrence Handle12077305

    Article  CAS  PubMed  Google Scholar 

  42. 42

    TH Wonnacott RJ Wonnacott (1982) Introductory statistics. Wiley New York 281–304

    Google Scholar 

  43. 43

    J Zhang M Nei (1997) ArticleTitleAccuracies of ancestral amino acid sequences inferred by the parsimony, likelihood, and distance methods. J Mol Evol 44 IssueIDSuppl 1 S139–S146 Occurrence Handle1:CAS:528:DyaK2sXhsFKjsLY%3D Occurrence Handle9071022

    CAS  PubMed  Google Scholar 

Download references


The cost of this article was partly covered by funds made available by the Agenzia Spaziale Italiana project “Extremophilic Archaea as model systems to study origin and evolution of early organisms: molecular mechanisms of adaptation to extreme physicochemical conditions,” Contract I/R/365/02.

Author information



Corresponding author

Correspondence to Massimo Di Giulio.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Di Giulio, M. The Universal Ancestor and the Ancestor of Bacteria Were Hyperthermophiles . J Mol Evol 57, 721–730 (2003).

Download citation


  • Ancestral sequences
  • Maximum likelihood
  • Thermophily index
  • Hot bacteria ancestor
  • Hot LUCA
  • Unrooted tree LUCA
  • Origin of life