Journal of Molecular Evolution

, Volume 57, Issue 3, pp 335–342

Molecular Evolution of Three Avian Neurotrophin Genes: Implications for Proregion Functional Constraints

Article

Abstract

Neurotrophin proteins are essential for the survival, differentiation, and maintenance of neurons in the peripheral and central nervous systems. Recent studies have shown that the unprocessed proforms of the neurotrophins are preferential high-affinity ligands for p75NTR and potent inducers of p75NTR-mediated cell death. Here, we explore differences in the selective constraints acting on the proregions of the three avian neurotrophin genes—NT-3, BDNF, and NGF—in an explicit phylogenetic context. We found a 50-fold difference in levels of constraint as estimated by dN/dS ratios, with the NGF proregion showing the lowest degree of constraint and BDNF the highest. These patterns suggest that the high conservation exhibited by the BDNF proregion results from intense functional constraints that are relaxed in NGF and somewhat relaxed in NT-3. The proregion of BDNF is likely to have a function that differentiates it from the corresponding regions of the NGF and NT-3 genes, suggesting that BDNF is the avian neurotrophin most likely to be used both in its precursor and mature forms in vivo.

Keywords

Neurotrophin NT-3 BDNF NGF Functional constraints Proregion 

References

  1. 1.
    Beattie, MS, Harrington, AW, Lee, R, Kim, JY, Boyce, SL, Longo, FM, Bresnahan, JC, Hempstead, BL, Yoon, SO 2002ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury.Neuron36375386PubMedGoogle Scholar
  2. 2.
    Caspers, G-J, Uit de Weerd, U, Wattel, J, de Jong, WW 1997Alpha-crystallin sequences support a Galliform/Anseriform clade.Mol Phylogenet Evol2185188CrossRefGoogle Scholar
  3. 3.
    Chao, MV 2000Trophic factors: An evolutionary cul-de-sac or door into higher neuronal function?J Neurosci59353355CrossRefGoogle Scholar
  4. 4.
    Chao, MV, Bothwell, M 2002Neurotrophins, to cleave or not to cleave.Neuron33912PubMedGoogle Scholar
  5. 5.
    Dobrowsky, RT, Carter, BD 2000p75 Neurotrophin receptor signaling: Mechanisms for neurotrophic modulation of cell stress?J Neurosci61237243CrossRefGoogle Scholar
  6. 6.
    Ebendal, T, Larhammar, D, Persson, H 1986Structure and expression of the chicken beta nerve growth factor gene.EMBO J514831487PubMedGoogle Scholar
  7. 7.
    Friedman, WJ, Greene, A 1999Neurotrophin signaling via Trks and p75.Exp Cell Res25131142CrossRefGoogle Scholar
  8. 8.
    Goldman, N, Anderson, JP, Rodrigo, AG 2000Likelihood-based tests of topologies in phylogenetics.Syst Biol49652670PubMedGoogle Scholar
  9. 9.
    Groth, JG, Barrowclough, GF 1999Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene.Mol Phylogenet Evol12115123CrossRefPubMedGoogle Scholar
  10. 10.
    Hallböök, F 1999Evolution of the vertebrate neurotrophin and Trk receptor gene families.Curr Opin Neurobiol9616621PubMedGoogle Scholar
  11. 11.
    Hallböök, F, Lundin, L-G, Kullander, K 1998Lamtera fluviatilis neurotrophin homolog, descendent of a neurotrophin ancestor, discloses the early molecular evolution of neurotrophins in the vertebrate subphylum.J Neurosci1887008711PubMedGoogle Scholar
  12. 12.
    Heinrich, G, Lum, T 2000Fish neurotrophins and Trk receptors.Int J Dev Neurosci18127CrossRefPubMedGoogle Scholar
  13. 13.
    Huelsenbeck, JP 2000MrBayes: Bayesian inference of phylogeny. Distributed by the author.Department of Biology, University of RochesterRochester, NYGoogle Scholar
  14. 14.
    Ibáñez, CF 2002Jekyll-Hyde neurotrophins: The story of proNGF.Trends Neurosci25284286CrossRefPubMedGoogle Scholar
  15. 15.
    Ibáñez, CF, Ebandal, T, Barbany, G, Murray-Rust, J, Blundell, TL, Persson, H 1992Disruption of the low affinity receptor-binding site in NGF allows neuronal survival and differentiation by binding to the trk gene product.Cell69329341PubMedGoogle Scholar
  16. 16.
    Ibáñez, CF, Ilag, L, Murray-Rust, J, Persson, H 1993An extended surface of binding to Trk tyrosine kinase receptors in NGF and BDNF allows the engineering of a multifunctional pan-neurotrophin.EMBO J1222812293PubMedGoogle Scholar
  17. 17.
    Ina, Y 1995New methods for estimating the numbers of synonymous and nonsynonymous substitutions.J Mol Evol40190226PubMedGoogle Scholar
  18. 18.
    Jones, KR, Reichardt, LF 1990Molecular cloning of a human gene that is a member of the nerve growth factor family.Proc Natl Acad Sci USA8780608064PubMedGoogle Scholar
  19. 19.
    Kaplan, DR, Miller, D 2000Neurotrophin signal transduction in the nervous system.Curr Opin Neurobiol10381391CrossRefPubMedGoogle Scholar
  20. 20.
    Kumar, S, Tamura, K, Jakobsen, IB, Nei, M 2001MEGA2: Molecular Evolutionary Genetics Analysis software.Bioinformatics1712441245PubMedGoogle Scholar
  21. 21.
    Lee, R, Kermani, P, Teng, KK, Hempstead, BL 2001Regulation of cell survival by secreted proneurotrophins.Science29419451948CrossRefPubMedGoogle Scholar
  22. 22.
    Maddison, WP, Maddison, DR 1992MacClade: Analysis of phylogeny and character evolution, version 3.06.Sinauer AssociatesSunderland, MAGoogle Scholar
  23. 23.
    Mindell, DP, Sorenson, MD, Dimcheff, DE, Hasegawa, M, Ast, JC, Yuri, T 1999Interordinal relationships of birds and other reptiles based on whole mitochondrial sequences.Syst Biol48138152PubMedGoogle Scholar
  24. 24.
    Mowla, SJ, Farhadi, HF, Pareek, S, Atwal, JK, Morris, SJ, Seidah, NG, Murphy, RA 2001Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor.J Biol Chem2761266012666CrossRefPubMedGoogle Scholar
  25. 25.
    Nei, M, Gojobori, T 1986Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions.Mol Biol Evol3418426PubMedGoogle Scholar
  26. 26.
    Patapoutian, A, Reichardt, LF 2001Trk receptors: Mediators of neurotrophin action.Curr Opin Neurobiol11272280CrossRefPubMedGoogle Scholar
  27. 27.
    Rattenholl, A, Ruoppolo, M, Flagiello, A, Monti, M, Vinci, F, Marino, G, Lilie, H, Schwarz, E, Rudolph, R 2001aPro-sequence assisted folding and disulfide biformation of human nerve growth factor.J Mol Biol305523533Google Scholar
  28. 28.
    Rattenholl, A, Lilie, H, Grossmann, A, Stern, A, Schwarz, E, Rudolph, R 2001bThe pro-sequence facilitates folding of human nerve growth factor from Escherichia coli inclusion bodies.Eur J Biochem26832963303Google Scholar
  29. 29.
    Sibley, CG, Ahlquist, JE 1990Phylogeny and classification of birds.Yale University PressNew Haven, CTGoogle Scholar
  30. 30.
    Suter, U, Heymach Jr, JV, Shooter, EM 1991Two conserved domains in the NGF propeptide are necessary and sufficient for the biosynthesis of correctly processed and biologically active NGF.EMBO J1023952400PubMedGoogle Scholar
  31. 31.
    Swofford, DL 1999PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b2.SinauerSunderland, MAGoogle Scholar
  32. 32.
    Urfer, R, Twoulfas, P, Soppet, D, Escandon, E, Parada, LF, Presta, LG 1994The binding epitopes of neurotrophin-3 to its receptors trkC and gp75 and the design of a multifunctional human neurotrophin.EMBO J1358065909Google Scholar
  33. 33.
    Van Tuinen, M, Sibley, CG, Hedges, SB 2000The early history of modern birds inferred from DNA sequences of nuclear and mitochondrial ribosomal genes.Mol Biol Evol17451457PubMedGoogle Scholar
  34. 34.
    Wetmore, A 1960A classification for the birds of the world.Smithson Misc Collect139Google Scholar
  35. 35.
    Yang, Z 1997PAML: A program for phylogenetic analysis by maximum likelihood.Comput Appl Biosci13555556PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  1. 1.Center for Tropical ResearchSan Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132USA
  2. 2.Evolutionary Biology ProgramCornell Laboratory of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850USA

Personalised recommendations