Skip to main content

Advertisement

Log in

Widespread Adaptive Evolution in the Human Immunodeficiency Virus Type 1 Genome

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We investigated variable selective pressures among amino acid sites in HIV-1 genes. Selective pressure at the amino acid level was measured by using the nonsynonymous/synonymous substitution rate ratio (ω = d N/d S). To identify amino acid sites under positive selection with ω > 1, we applied maximum likelihood models that allow variable ω ratios among sites to analyze genomic sequences of 26 HIV-1 lineages including subtypes A, B, and C. Likelihood ratio tests detected sites under positive selection in each of the major genes in the genome: env, gag, pol, vif, and vpr. Positive selection was also detected in nef, tat, and vpu, although those genes are very small. The majority of positive selection sites is located in gp160. Positive selection was not detected if ω was estimated as an average across all sites, indicating the lack of power of the averaging approach. Candidate positive selection sites were mapped onto the available protein tertiary structures and immunogenic epitopes. We measured the physiochemical properties of amino acids and found that those at positive selection sites were more diverse than those at variable sites. Furthermore, amino acid residues at exposed positive selection sites were more physiochemically diverse than at buried positive selection sites. Our results demonstrate genomewide diversifying selection acting on the HIV-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C Alff-Steinberger (1969) ArticleTitleThe genetic code and error transmission. Proc Natl Acad Sci USA 64 584–591 Occurrence Handle1:CAS:528:DyaE3cXmt1KrtA%3D%3D Occurrence Handle5261915

    CAS  PubMed  Google Scholar 

  2. TM Allen DH O’Connor P Jing et al. (2000) ArticleTitleTat-specific cytotoxic T lymphocytes selected for SIV escape variants during resolution of primary viraemia. Nature 407 386–390 Occurrence Handle10.1038/35036559 Occurrence Handle1:CAS:528:DC%2BD3cXntF2ntr0%3D Occurrence Handle11014195

    Article  CAS  PubMed  Google Scholar 

  3. M Altfeld ES Rosenberg R Shankarappa et al. (2001) ArticleTitleCellular immune responses and viral diversity in individuals treated during acute and early HIV-1 infection. J Exp Med 193 169–180 Occurrence Handle10.1084/jem.193.2.169 Occurrence Handle1:CAS:528:DC%2BD3MXksl2nsA%3D%3D Occurrence Handle11148221

    Article  CAS  PubMed  Google Scholar 

  4. M Anisimova JP Bielawski Z Yang (2001) ArticleTitleThe accuracy and power of likelihood ratio tests to detect positive selection at amino acid sites. Mol Biol Evol 18 1585–1592 Occurrence Handle1:CAS:528:DC%2BD3MXlslOisLw%3D Occurrence Handle11470850

    CAS  PubMed  Google Scholar 

  5. M Anisimova JP Bielawski Z Yang (2002) ArticleTitleAccuracy and power of Bayesian prediction of amino acid sites under positive selection. Mol Biol Evol 19 950–958 Occurrence Handle1:CAS:528:DC%2BD38Xks1Ojur8%3D Occurrence Handle12032251

    CAS  PubMed  Google Scholar 

  6. T Beaumont A van Nuenen S Broersen WA Blattner VV Lukashov H Schuitemaker (2001) ArticleTitleReversal of human immunodeficiency virus type 1 IIIB to a neutralization-resistant phenotype in an accidentally infected laboratory worker with a progressive clinical course. J Virol 75 2246–2252 Occurrence Handle10.1128/JVI.75.5.2246-2252.2001 Occurrence Handle1:CAS:528:DC%2BD3MXhtlGgsbk%3D Occurrence Handle11160728

    Article  CAS  PubMed  Google Scholar 

  7. S Bondada RL Chelvarajan (1999) B lymphocytes. Encyclopedia of science 2001. Nature Publishing Group London

    Google Scholar 

  8. C Brander PJR Goulder (2000) The evolving field of HIV CTL epitope mapping: New approaches to the identification of novel epitopes. B Korber C Brander BF Haynes R Koup C Kuiken JP Moure BD Walker DI Watkins (Eds) HIV molecular immunology 2001. Los Alamos National Laboratory, Theoretical Biology and Biophysics Los Alamos, NM

    Google Scholar 

  9. S Calarota M Jansson M Levi K Broliden O Libonatti H Wigzell B Wahren (1996) ArticleTitleImmunodominant glycoprotein 41 epitope identified by seroreactivity in HIV type 1-infected individuals. AIDS Res Hum Retroviruses 12 705–713 Occurrence Handle1:CAS:528:DyaK28XjtlSitLY%3D Occurrence Handle8744581

    CAS  PubMed  Google Scholar 

  10. KA Crandall CR Kelsey H Imamichi HC Lane NP Salzman (1999) ArticleTitleParallel evolution of drug resistance in HIV: Failure of nonsynonymous/synonymous substitution rate ratio to detect selection. Mol Biol Evol 16 372–382 Occurrence Handle1:CAS:528:DyaK1MXhvVOqtLs%3D Occurrence Handle10331263

    CAS  PubMed  Google Scholar 

  11. E Domingo (1997) ArticleTitleRNA virus mutations and fitness for survival. Annu Rev Microbiol 51 151–178 Occurrence Handle1:CAS:528:DyaK2sXms1Shsbo%3D

    CAS  Google Scholar 

  12. DT Evans DH O’Connor PC Jing et al. (1999) ArticleTitleVirus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef. Nature Med 5 1270–1276 Occurrence Handle10.1038/15224 Occurrence Handle1:CAS:528:DyaK1MXnt1yntro%3D Occurrence Handle10545993

    Article  CAS  PubMed  Google Scholar 

  13. A Eyre-Walker PD Keightley (1999) ArticleTitleHigh genomic deleterious mutation rates in hominids. Nature 397 344–347 Occurrence Handle10.1038/16915 Occurrence Handle1:CAS:528:DyaK1MXhtVyjt7w%3D Occurrence Handle9950425

    Article  CAS  PubMed  Google Scholar 

  14. MA Fares A Moya C Escarmis E Baranowski E Domingo E Barrio (2001) ArticleTitleEvidence for positive selection in the capsid protein-coding region of the foot-and-mouth disease virus (FMDV) subjected to experimental passage regimens. Mol Biol Evol 18 10–21 Occurrence Handle1:CAS:528:DC%2BD3MXhtVSms7w%3D Occurrence Handle11141188

    CAS  PubMed  Google Scholar 

  15. A Fomsgaard (1999) ArticleTitleHIV-1 DNA vaccines. Immunol Lett 65 127–131 Occurrence Handle10.1016/S0165-2478(98)00135-7 Occurrence Handle1:CAS:528:DyaK1MXksFGhtA%3D%3D Occurrence Handle10065638

    Article  CAS  PubMed  Google Scholar 

  16. YX Fu (2001) ArticleTitleEstimating mutation rate and generation time from longitudinal samples of DNA sequences. Mol Biol Evol 18 620–626 Occurrence Handle1:CAS:528:DC%2BD3MXis1eisbY%3D Occurrence Handle11264414

    CAS  PubMed  Google Scholar 

  17. T Gojobori EN Moriyama M Kimura (1990) ArticleTitleMolecular clock of viral evolution and the neutral theory. Proc Natl Acad Sci USA 87 10015–10018 Occurrence Handle1:CAS:528:DyaK3MXls1GjtA%3D%3D Occurrence Handle2263602

    CAS  PubMed  Google Scholar 

  18. N Goldman Z Yang (1994) ArticleTitleA codon based model of nucleotide substitution for protein coding DNA sequences. Mol Biol Evol 11 725–736 Occurrence Handle7968486

    PubMed  Google Scholar 

  19. FM Gotch (1998) T lymphocytes: Cytotoxic. Encyclopedia of science 2001. Nature Publishing Group London

    Google Scholar 

  20. R Grantham (1974) ArticleTitleAmino acid difference formula to help explain protein evolution. Science 185 862–864 Occurrence Handle1:CAS:528:DyaE2cXlsVOiuro%3D Occurrence Handle4843792

    CAS  PubMed  Google Scholar 

  21. GC Harcourt S Garrard MP Davenport A Edwards RE Philips (1998) ArticleTitleHIV-1 variation diminishes CD4 T lymphocyte recognition. J Exp Med 188 1785–1793 Occurrence Handle10.1084/jem.188.10.1785 Occurrence Handle1:CAS:528:DyaK1cXnsVKlu7w%3D Occurrence Handle9815256

    Article  CAS  PubMed  Google Scholar 

  22. M Hasegawa H Kishino T Yano (1985) ArticleTitleDating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22 160–174 Occurrence Handle1:CAS:528:DyaL2MXmtFSns7g%3D Occurrence Handle3934395

    CAS  PubMed  Google Scholar 

  23. DT Haydon S Lea L Fry N Knowles AR Samuel D Stuart MEJ Woolhouse (1998) ArticleTitleCharacterising sequence variation in the VP1 capsid proteins of foot and mouth disease virus (serotype 0) with respect to virion structure. J Mol Evol 46 465–475 Occurrence Handle1:CAS:528:DyaK1cXitlSnu7Y%3D Occurrence Handle9541542

    CAS  PubMed  Google Scholar 

  24. DT Haydon AD Bastos NJ Knowles AR Samuel (2001) ArticleTitleEvidence of positive selection in foot-and-mouth disease virus capsid genes from field isolates. Genetics 157 7–15 Occurrence Handle1:CAS:528:DC%2BD3MXhtFKht74%3D Occurrence Handle11139487

    CAS  PubMed  Google Scholar 

  25. AL Hughes (1992) ArticleTitlePositive selection and interallelic recombination at the Merozoite surface antigen-1 (MSA-1) locus of Plasmodium falciparum. Mol Biol Evol 9 381–393 Occurrence Handle1:CAS:528:DyaK3sXhvVCksL0%3D Occurrence Handle1584009

    CAS  PubMed  Google Scholar 

  26. AL Hughes T Ota M Nei (1990) ArticleTitlePositive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. Mol Biol Evol 7 515–524 Occurrence Handle1:STN:280:By6C3szisF0%3D Occurrence Handle2283951

    CAS  PubMed  Google Scholar 

  27. T Igarashi T Kuwata J Takehisa K Ibuki R Shibata R Mukai T Komatsu A Adachi E Ido M Hayami (1996) ArticleTitleGenomic and biological alteration of a human immunodeficiency virus type 1 (HIV-1)-simian immunodeficiency virus strain mac chimera, with HIV-1 Env, recovered from a long-term carrier monkey. J Gen Virol 77 1649–1658 Occurrence Handle1:CAS:528:DyaK28Xks1OmsL0%3D Occurrence Handle8760411

    CAS  PubMed  Google Scholar 

  28. AE Jetzt H Yu GJ Klarmann Y Ron BD Preston JP Dougherty (2000) ArticleTitleHigh rate of recombination throughout the human immunodeficiency virus type 1 genome. J Virol 74 1234–1240 Occurrence Handle10.1128/JVI.74.3.1234-1240.2000 Occurrence Handle1:CAS:528:DC%2BD3cXmtFyiuw%3D%3D Occurrence Handle10627533

    Article  CAS  PubMed  Google Scholar 

  29. B Korber C Brander B Haynes R Koup C Kuiken JP Moore BD Walker DI Watkins (Eds) (2000) HIV molecular immunology 2000. Los Alamos National Laboratory, Theoretical Biology and Biophysics Los Alamos, NM

    Google Scholar 

  30. J Kyte RF Doolittle (1982) ArticleTitleA simple method for displaying the hydropathic character of a protein. J Mol Biol 157 105–132 Occurrence Handle1:CAS:528:DyaL38Xks1yjtro%3D Occurrence Handle7108955

    CAS  PubMed  Google Scholar 

  31. JPM Langedijk G Zwart J Goudsmit RH Meloen (1995) ArticleTitleFine specificity of antibody recognition may predict amino acid substitution in the 3rd variable region of GP120 during HIV type-1 infection. AIDS Res Hum Retroviruses 11 1153–1162 Occurrence Handle1:CAS:528:DyaK28Xjs1Wn Occurrence Handle8573370

    CAS  PubMed  Google Scholar 

  32. AJ Leigh Brown (1997) ArticleTitleAnalysis of HIV-1 env gene reveals evidence for a low effective number in the viral population. Proc Natl Acad Sci USA 94 1862–1865 Occurrence Handle10.1073/pnas.94.5.1862 Occurrence Handle9050870

    Article  PubMed  Google Scholar 

  33. VV Lukashov J Goudsmit (1997) ArticleTitleEvolution of the human immunodeficiency virus type 1 subtype-specific V3 domain is confined to a sequence space with a fixed distance to the subtype consensus. J Virol 71 6332–6338 Occurrence Handle1:CAS:528:DyaK2sXlsVKqtLo%3D Occurrence Handle9261350

    CAS  PubMed  Google Scholar 

  34. DA McClellan KG McCracken (2001) ArticleTitleEstimating the influence of selection on the variable amino acid sites of the cytochrome b protein functional domains. Mol Biol Evol 18 917–925 Occurrence Handle1:CAS:528:DC%2BD3MXktFemtLY%3D Occurrence Handle11371579

    CAS  PubMed  Google Scholar 

  35. L McLain JL Brown L Cheung SA Reading C Parry TD Jones SM Cleveland NJ Dimmock (2001) ArticleTitleDifferent effects of a single amino acid substitution on three adjacent epitopes in the gp41 C-terminal tail of a neutralizing antibody escape mutant of human immunodeficiency virus type 1. Arch Virol 146 157–166 Occurrence Handle10.1007/s007050170199 Occurrence Handle1:CAS:528:DC%2BD3MXit1Ohsrs%3D Occurrence Handle11266210

    Article  CAS  PubMed  Google Scholar 

  36. D Metzgar C Wills (2000) ArticleTitleEvolutionary changes in mutation rates and spectra and their influence on the adaptation of pathogens. Microbes Infect 2 1513–1522 Occurrence Handle10.1016/S1286-4579(00)01306-X Occurrence Handle1:STN:280:DC%2BD3M7ivVersw%3D%3D Occurrence Handle11099938

    Article  CAS  PubMed  Google Scholar 

  37. KB Nicholas HB Nicholas DW Deerfield (1997) ArticleTitleGeneDoc: Analysis and visualization of genetic variation. Version 2.5. EMBnew News 4 14

    Google Scholar 

  38. R Nielsen Z Yang (1998) ArticleTitleLikelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148 929–936 Occurrence Handle1:CAS:528:DyaK1cXks1eitr8%3D Occurrence Handle9539414

    CAS  PubMed  Google Scholar 

  39. PJ Norris M Sumaroka C Brander HF Moffett SL Boswell T Nguyen Y Sykulev BD Walker ES Rosenberg (2001) ArticleTitleMultiple effector functions mediated by human immunodeficiency virus-specific CD4(+) T-cell clones. J Virol 75 9771–9779 Occurrence Handle1:CAS:528:DC%2BD3MXnt1Ggs78%3D Occurrence Handle11559810

    CAS  PubMed  Google Scholar 

  40. AS Peek V Souza LE Eguiarte BS Gaut (2001) ArticleTitleThe interaction of protein structure, selection, and recombination on the evolution of the type-1 fimbrial major subunit (fimA) from Escherichia coli. J Mol Evol 52 193–204 Occurrence Handle1:CAS:528:DC%2BD3MXhtlSqu7c%3D Occurrence Handle11244580

    CAS  PubMed  Google Scholar 

  41. RE Phillips GC Harcourt DA Price (2001) ArticleTitleCD4+ T cells: The great escape. Nature Med 7 777–778 Occurrence Handle10.1038/89892 Occurrence Handle1:CAS:528:DC%2BD3MXltVSgs78%3D Occurrence Handle11433338

    Article  CAS  PubMed  Google Scholar 

  42. U Plikat K Nieselt-Struwe A Meyerhans (1997) ArticleTitleGenetic drift can dominate short-term human immunodeficiency virus type 1 nef quasispecies evolution in vivo. J Virol 71 4233–4240 Occurrence Handle1:CAS:528:DyaK2sXjt1CmsLo%3D Occurrence Handle9151810

    CAS  PubMed  Google Scholar 

  43. DL Robertson JP Anderson JA Bradac (1999) HIV-1 nomenclature proposal. CL Kuiken B Foley B Hahn B Korber F McCutchan PA Marx JW Mellors JI Mullins J Sodroski S Wolinksy (Eds) Human retroviruses and AIDS 1999. Theoretical Biology and Biophysics Group, Los Alamos National Laboratory Los Alamos, NM 492–505

    Google Scholar 

  44. ES Rosenberg M Altfeld SH Poon MN Phillips BM Wilkes RL Eldridge GK Robbins RT D’Aquila PJR Goulder BD Walker et al. (2000) ArticleTitleImmune control of HIV-1 after early treatment of acute infection. Nature 407 523–526 Occurrence Handle1:CAS:528:DC%2BD3cXntlSrsrk%3D Occurrence Handle11029005

    CAS  PubMed  Google Scholar 

  45. HA Ross AG Rodrigo (2002) ArticleTitleImmune-mediated positive selection drives human immunodeficiency virus type 1 molecular variation and predicts disease duration. J Virol 76 11715–11720 Occurrence Handle10.1128/JVI.76.22.11715-11720.2002 Occurrence Handle1:CAS:528:DC%2BD38XoslKjtL4%3D Occurrence Handle12388731

    Article  CAS  PubMed  Google Scholar 

  46. SA Seibert CY Howell MK Hughes AL Hughes (1995) ArticleTitleNatural selection on the gag, pol and env genes of human immunodeficiency virus 1 (HIV-1). Mol Biol Evol 12 803–813 Occurrence Handle1:CAS:528:DyaK2MXns1yqsbo%3D Occurrence Handle7476126

    CAS  PubMed  Google Scholar 

  47. RF Siliciano (2001) Acquired immune deficiency syndrome (AIDS). Encyclopedia of life science 2001. Nature Publishing Group London

    Google Scholar 

  48. PM Sharp (1997) ArticleTitleIn search of molecular Darwinism. Nature 385 111–112 Occurrence Handle10.1038/385111a0 Occurrence Handle8990106

    Article  PubMed  Google Scholar 

  49. WJ Swanson Z Yang MF Wolfner CF Aquadro (2001) ArticleTitlePositive Darwinian selection drives the evolution of several female reproductive proteins in mammals. Proc Natl Acad Sci USA 98 2509–2514 Occurrence Handle10.1073/pnas.051605998 Occurrence Handle1:CAS:528:DC%2BD3MXhslKms78%3D Occurrence Handle11226269

    Article  CAS  PubMed  Google Scholar 

  50. DL Swofford (2000) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates Sunderland, MA

    Google Scholar 

  51. JD Thompson TJ Gibson F Plewniak F Jeanmougin DG Higgins (1997) ArticleTitleThe ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24 4876–4882 Occurrence Handle10.1093/nar/25.24.4876

    Article  Google Scholar 

  52. BD Walker PJR Goulder (2000) ArticleTitleAIDS—Escape from the immune system. Nature 407 313–314 Occurrence Handle10.1038/35030283 Occurrence Handle1:CAS:528:DC%2BD3cXntFyksbc%3D Occurrence Handle11014174

    Article  CAS  PubMed  Google Scholar 

  53. D Walther (1997) ArticleTitleWEBMOL, a Java based PDB viewer. Trends Biochem Sci 22 274–275 Occurrence Handle10.1016/S0968-0004(97)89047-0 Occurrence Handle1:CAS:528:DyaK2sXks1yksbc%3D Occurrence Handle9255071

    Article  CAS  PubMed  Google Scholar 

  54. EJB Williams C Pal LD Hurst (2000) ArticleTitleThe molecular evolution of signal peptides. Gene 253 313–322 Occurrence Handle10.1016/S0378-1119(00)00233-X Occurrence Handle1:CAS:528:DC%2BD3cXlsFSlu78%3D Occurrence Handle10940569

    Article  CAS  PubMed  Google Scholar 

  55. X Xia (2000) Data analysis in molecular biology and evolution. Kluwer Academic Dordrecht

    Google Scholar 

  56. Y Yamaguchi-Kabata T Gojobori (2000) ArticleTitleReevaluation of amino acid variability of the HIV-1 gp120 envelop glycoprotein and prediction of new discontinuous epitopes. J Virol 74 4335–4350 Occurrence Handle10.1128/JVI.74.9.4335-4350.2000 Occurrence Handle1:CAS:528:DC%2BD3cXislGqsrk%3D Occurrence Handle10756049

    Article  CAS  PubMed  Google Scholar 

  57. Z Yang (2000) Phylogenetic analysis by maximum likelihood (PAML). Version 3. University College London London

    Google Scholar 

  58. Yang Z (2001) Maximum likelihood analysis of adaptive evolution in HIV-1 gp120 env gene. Pacific Symp Biocomput pp 226–237

  59. Z Yang R Nielsen N Goldman AM Pedersen (2000) ArticleTitleCodon substitution models for heterogeneous selection pressure at amino acid sites. Genetics 15 1600–1611 Occurrence Handle10930538

    PubMed  Google Scholar 

  60. A Zanotto PMde EG Kallas RF de Souza EC Holmes (1999) ArticleTitleGenealogical evidence for positive selection in the nef gene of HIV-1. Genetics 153 1077–1089 Occurrence Handle10545443

    PubMed  Google Scholar 

  61. PF Zhang X Chen DW Fu JB Margolick GV Quinnan (1999) ArticleTitlePrimary virus envelope cross-reactivity of the broadening neutralizing antibody response during early chronic human immunodeficiency virus type 1 infection. J Virol 73 5225–5230 Occurrence Handle1:CAS:528:DyaK1MXjtFeqs7k%3D Occurrence Handle10233993

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziheng Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Bielawski, J.P. & Yang, Z. Widespread Adaptive Evolution in the Human Immunodeficiency Virus Type 1 Genome . J Mol Evol 57, 212–221 (2003). https://doi.org/10.1007/s00239-003-2467-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-2467-9

Keywords

Navigation