Advertisement

The Journal of Membrane Biology

, Volume 196, Issue 3, pp 163–172 | Cite as

Endothelial Cell Swelling by Aldosterone

  • H. Oberleithner
  • S. W. Schneider
  • L. Albermann
  • U. Hillebrand
  • T. Ludwig
  • C. Riethmüller
  • V. Shahin
  • C. Schäfer
  • H. Schillers
Article

Abstract

There is accumulating evidence that mineralocorticoids not only act on kidney but also on the cardiovascular system. We investigated the response of human umbilical venous endothelial cells (HUVECs) to aldosterone at a time scale of 20 minutes in absence and presence of the aldosterone antagonist spironolactone or other transport inhibitors. We applied atomic force microscopy (AFM), which measures cell volume and volume shifts between cytosol and cell nucleus. We observed an immediate cell volume increase (about 10%) approximately 1 min after addition of aldosterone (0.1 µmol/l), approaching a maximum (about 18%) 10 min after aldosterone treatment. Cell volume returned to normal 20 min after hormone exposure. Spironolactone (1 µmol/l) or amiloride (1 µmol/l) prevented the late aldosterone-induced volume changes but not the immediate change observed 1 min after hormone exposure. AFM revealed nuclear swelling 5 min after aldosterone addition, followed by nuclear shrinkage 15 min later. The Na+/H+ exchange blocker cariporide (10 µmol/l) was ineffective. We conclude: (i) Aldosterone induces immediate (1 min) swelling independently of plasma membrane Na+ channels and intracellular mineralocorticoid receptors followed by late mineralocorticoid receptor- and Na+-channel-dependent swelling. (ii) Intracellular macromolecule shifts cause the changes in cell volume. (iii) Both amiloride and spironolactone may be useful for medical applications to prevent aldosterone-induced vasculopathies.

Keywords

HUVECs Atomic force microscopy Cariporide Mineralocorticoids Na+ channel Vasculopathies 

Notes

Acknowledgements

We thank Mrs. Marianne Wilhelmi and Hannelore Arnold for their excellent HUVEC culture work. We thank Drs. Kleemann and Lang (Aventis Pharma GmbH, Deutschland) for kindly providing cariporide. The study was supported by IZKF Münster (Project A9) and the Volkswagenstiftung (Project BD 151103).

References

  1. 1.
    Berliner, R.W., Giebisch, G. 2001Remembrances of renal potassium transport.J. Membrane Biol.184225232CrossRefGoogle Scholar
  2. 2.
    Brown, G.A., Vukovich, M.D., Martini, E.R., Kohut, M.L., Franke, W.D., Jackson, D.A., King, D.S. 2000Endocrine responses to chronic androstenedione intake in 30- to 56-year-old men.J. Clin. Endocrinol. Metab.8540744080PubMedGoogle Scholar
  3. 3.
    Doolan, C.M., O’Sullivan, G.C., Harvey, B.J. 1998Rapid effects of corticosteroids on cytosolic protein kinase C and intracellular calcium concentration in human distal colon.Mol. Cell Endocrinol.1387179CrossRefPubMedGoogle Scholar
  4. 4.
    Duprez, D., De Buyzere, M., Rietzschel, E.R., Clement, D.L. 2000Aldosterone and vascular damage.Curr. Hypertens. Rep.2327334PubMedGoogle Scholar
  5. 5.
    Epstein, M. 2001Aldosterone as a mediator of progressive renal disease: pathogenetic and clinical implications.Am. J. Kidney Dis.37677688PubMedGoogle Scholar
  6. 6.
    Frindt, G., McNair, T., Dahlmann, A., Jacobs-Palmer, E., Palmer, L.G. 2002Epithelial Na channels and short-term renal response to salt deprivation.Am. J. Physiol.283F717F726Google Scholar
  7. 7.
    Gamper, N., Huber, S.M., Badawi, K., Lang, F. 2000Cell volume-sensitive sodium channels upregulated by glucocorticoids in U937 macrophages.Pfluegers Arch.441281286CrossRefGoogle Scholar
  8. 8.
    Gekle, M., Golenhofen, N., Oberleithner, H., Silbernagl, S. 1996Rapid activation of Na+/H+ exchange by aldosterone in renal epithelial cells requires Ca2+ and stimulation of a plasma membrane proton conductance.Proc. Natl. Acad. Sci USA931050010504CrossRefPubMedGoogle Scholar
  9. 9.
    Goerge, T., Niemeyer, A., Rogge, P., Ossig, R., Oberleithner, H., Schneider, S.W. 2002Secretion pores in human endothelial cells during acute hypoxia.J. Membrane Biol.187203211CrossRefGoogle Scholar
  10. 10.
    Golestaneh, N., Klein, C., Valamanesh, F., Suarez, G., Agarwal, M.K., Mirshahi, M. 2001Mineralocorticoid receptor-mediated signaling regulates the ion gated sodium channel in vascular endothelial cells and requires an intact cytoskeleton.Biochem. Biophys. Res. Commun.28013001306CrossRefPubMedGoogle Scholar
  11. 11.
    Hatakeyama, H., Miyamori, I., Fujita, T., Takeda, Y., Takeda, R., Yamamoto, H. 1994Vascular aldosterone. Biosynthesis and a link to angiotensin II-induced hypertrophy of vascular smooth muscle cells.J. Biol. Chem.2692431624320PubMedGoogle Scholar
  12. 12.
    Hayashi, H., Szaszi, K., Grinstein, S. 2002Multiple modes of regulation of Na+/H+ exchangers.Ann. N. Y. Acad. Sci.976248258PubMedGoogle Scholar
  13. 13.
    Jaffe, E.A., Nachman, R.L., Becker, C.G., Minick, C.R. 1973Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria.J. Clin. Invest5227452756PubMedGoogle Scholar
  14. 14.
    Lijnen, P., Petrov, V. 2000Induction of cardiac fibrosis by aldosterone.J. Mol. Cell Cardiol.32865879CrossRefPubMedGoogle Scholar
  15. 15.
    Lombes, M., Oblin, M.E., Gasc, J.M., Baulieu, E.E., Farman, N., Bonvalet, J.P. 1992Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor.Circ. Res.71503510PubMedGoogle Scholar
  16. 16.
    Meyer, W.J., II, Nichols, N.R. 1981Mineralocorticoid binding in cultured smooth muscle cells and fibroblasts from rat aorta.J. Steroid Biochem.1411571168CrossRefPubMedGoogle Scholar
  17. 17.
    Miric, G., Dallemagne, C., Endre, Z., Margolin, S., Taylor, S.M., Brown, L. 2001Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats.Br. J. Pharmacol.133687694PubMedGoogle Scholar
  18. 18.
    Nielsen, J., Kwon, T.H., Masilamani, S., Beutler, K., Hager, H., Nielsen, S., Knepper, M.A. 2002Sodium transporter abundance profiling in kidney: effect of spironolactone.Am. J. Physiol.283F923F933Google Scholar
  19. 19.
    Oberleithner, H., Reinhardt, J., Schillers, H., Pagel, P., Schneider, S.W. 2000Aldosterone and nuclear volume cycling.Cell Physiol. Biochem.10429434CrossRefPubMedGoogle Scholar
  20. 20.
    Oberleithner, H., Weigt, M., Westphale, H.-J., Wang, W. 1987Aldosterone activates Na+/H+ exchange and raises cytoplasmic pH in target cells of the amphibian kidney.Proc. Natl. Acad. Sci. USA8414641468PubMedGoogle Scholar
  21. 21.
    Oliver, J.A., Al Awqati, Q. 1998An endothelial growth factor involved in rat renal development.J. Clin. Invest.10212081219PubMedGoogle Scholar
  22. 22.
    Palmieri, E.A., Biondi, B., Fazio, S. 2002Aldosterone receptor blockade in the management of heart failure.Heart Fail. Rev.7205219CrossRefPubMedGoogle Scholar
  23. 23.
    Rajagopalan, S., Duquaine, D., King, S., Pitt, B., Patel, P. 2002Mineralocorticoid receptor antagonism in experimental atherosclerosis.Circulation10522122216CrossRefPubMedGoogle Scholar
  24. 24.
    Rossier, B.C. 2002Hormonal regulation of the epithelial sodium channel ENaC: N or P(o)?J. Gen. Physiol.1206770CrossRefPubMedGoogle Scholar
  25. 25.
    Schafer, C., Shahin, V., Albermann, L., Hug, M.J., Reinhardt, J., Schillers, H., Schneider, S.W., Oberleithner, H. 2002Aldosterone signaling pathway across the nuclear envelope.Proc. Natl. Acad. Sci. USA9971547159CrossRefPubMedGoogle Scholar
  26. 26.
    Schneider, M., Ulsenheimer, A., Christ, M., Wehling, M. 1997aNongenomic effects of aldosterone on intracellular calcium in porcine endothelial cells.Am. J. Physiol272E616E620Google Scholar
  27. 27.
    Schneider, S.W., Yano, Y., Sumpio, B.E., Jena, B.P., Geibel, J.P., Gekle, M., Oberleithner, H. 1997bRapid aldosterone-induced cell volume increase of endothelial cells measured by the atomic force microscope.Cell Biol. Int.21759768Google Scholar
  28. 28.
    Silvestre, J.S., Robert, V., Heymes, C., Aupetit-Faisant, B., Mouas, C., Moalic, J.M., Swynghedauw, B., Delcayre, C. 1998Myocardial production of aldosterone and corticosterone in the rat. Physiological regulation.J. Biol. Chem.27348834891CrossRefPubMedGoogle Scholar
  29. 29.
    Stier Jr, C.T., Chander, P.N., Rocha, R. 2002Aldosterone as a mediator in cardiovascular injury.Cardiol. Rev.1097107CrossRefPubMedGoogle Scholar
  30. 30.
    Stokes, J.B. 1999Disorders of the epithelial sodium channel: insights into the regulation of extracellular volume and blood pressure.Kidney Int.5623182333CrossRefPubMedGoogle Scholar
  31. 31.
    Symons, J.D., Schaefer, S. 2001Na(+)/H(+) exchange subtype 1 inhibition reduces endothelial dysfunction in vessels from stunned myocardium.Am. J. Physiol.281H1575H1582Google Scholar
  32. 32.
    Takeda, Y., Miyamori, I., Yoneda, T., Iki, K., Hatakeyama, H., Blair, I.A., Hsieh, F.Y., Takeda, R. 1995Production of aldosterone in isolated rat blood vessels.Hypertension25170173PubMedGoogle Scholar
  33. 33.
    Takeda, Y., Yoneda, T., Demura, M., Miyamori, I., Mabuchi, H. 2000Sodium-induced cardiac aldosterone synthesis causes cardiac hypertrophy.Endocrinology14119011904PubMedGoogle Scholar
  34. 34.
    Weber, K.T., Brilla, C.G. 1991Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system.Circulation8318491865PubMedGoogle Scholar
  35. 35.
    Wehling, M., Kasmayr, J., Theisen, K. 1989Fast effects of aldosterone on electrolytes in human lymphocytes are mediated by the sodium-proton-exchanger of the cell membrane.Biochem. Biophys. Res. Commun.164961967PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  • H. Oberleithner
    • 1
  • S. W. Schneider
    • 2
  • L. Albermann
    • 1
  • U. Hillebrand
    • 1
  • T. Ludwig
    • 1
  • C. Riethmüller
    • 1
  • V. Shahin
    • 1
  • C. Schäfer
    • 1
  • H. Schillers
    • 1
  1. 1.Institute of Physiology I, NanolabUniversity of Münster, Robert-Koch-Str. 27a, D-48149 MünsterGermany
  2. 2.Department of DermatologyUniversity of Münster, von-Esmerck-Str. 58, D-48149 MünsterGermany

Personalised recommendations