Journal of Molecular Evolution

, Volume 60, Issue 2, pp 153–163 | Cite as

Phylogenetic Analyses of the Core Antenna Domain: Investigatingthe Origin of Photosystem I

Article

Abstract

Phototrophy, the conversion of light to biochemical energy, occurs throughout the Bacteria and plants, however, debate continues over how different phototrophic mechanisms and the bacteria that contain them are related. There are two types of phototrophic mechanisms in the Bacteria: reaction center type 1 (RC1) has core and core antenna domains that are parts of a single polypeptide, whereas reaction center type 2 (RC2) is composed of short core proteins without antenna domains. In cyanobacteria, RC2 is associated with separate core antenna proteins that are homologous to the core antenna domains of RC1. We reconstructed evolutionary relationships among phototrophic mechanisms based on a phylogeny of core antenna domains/proteins. Core antenna domains of 46 polypeptides were aligned, including the RC1 core proteins of heliobacteria, green sulfur bacteria, and photosystem I (PSI) of cyanobacteria and plastids, plus core antenna proteins of photosystem II (PSII) from cyanobacteria and plastids. Maximum likelihood, parsimony, and neighbor joining methods all supported a single phylogeny in which PSII core antenna proteins (PsbC, PsbB) arose within the cyanobacteria from duplications of the RC1-associated core antenna domains and accessory antenna proteins (IsiA, PcbA, PcbC) arose from duplications of PsbB. The data indicate an evolutionary history of RC1 in which an initially homodimeric reaction center was vertically transmitted to green sulfur bacteria, heliobacteria, and an ancestor of cyanobacteria. A heterodimeric RC1 (=PSI) then arose within the cyanobacterial lineage. In this scenario, the current diversity of core antenna domains/proteins is explained without a need to invoke horizontal transfer.

Keywords

Cyanobacteria Green sulfur bacteria Heliobacteria Phylogeny Photosystem I Photosystem II Reaction center 1 Reaction center 2 

References

  1. Barber, J, Morris, E, Buchel, C 2000Revealing the structure of the photosystem II chlorophyll binding proteins, CP43 and CP47Biochim Biophys Acta Bioenerg1459239247Google Scholar
  2. Baymann, D, Brugna, M, Muhlenhoff, U, Nitschke, W 2001Daddy, where did (PS)I come from? Biochim Biophys Acta Bioenerg1507291310Google Scholar
  3. Beja, O, Aravind, L, Koonin, EV, Suzuki, MT, Hadd, A, Nguyen, LP, Jovanovich, S, Gates, CM, Feldman, RA, Spudich, JL, Spudich, EN, DeLong, EF 2000Bacterial rhodopsin: Evidence for a new type of phototrophy in the seaScience28919021906CrossRefPubMedGoogle Scholar
  4. Bibby, TS, Nield, J, Barber, J 2001Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteriaNature412743745Google Scholar
  5. Bibby, TS, Mary, I, Nield, J, Barber, J 2003Low-light-adapted Prochlorococcus species possess specific antennae for each photosystemNature42410511054Google Scholar
  6. Bieszke, JA, Braun, EL, Bean, LE, Kang, S, Natvig, DO, Borkovich, KA 1999The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsinsProc Natl Acad Sci USA9680348039Google Scholar
  7. Blankenship, RE 1992Origin and early evolution of photosynthesisPhotosynth Res3391111Google Scholar
  8. Blankenship, RE 2002Molecular Mechanisms of PhotosynthesisBlackwell ScienceMaiden, MAGoogle Scholar
  9. Blankenship, RE, Hartman, H 1998The origin and evolution of oxygenic photosynthesisTrends Biochem Sci239497Google Scholar
  10. Boekema, EJ, Hifney, A, Yakushevska, AE, Piotrowski, M, Keegstra, W, Berry, S, Michel, KP, Pistorius, EK, Kruip, J 2001A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteriaNature412745748Google Scholar
  11. Brown, JR, Douady, CJ, Italia, MJ, Marshall, WE, Stanhope, MJ 2001Universal trees based on large combined protein sequence data setsNature Genet28281285Google Scholar
  12. Deisenhofer, J, Epp, O, Sinning, I, Michel, H 1995Crystallographic refinement at 2.3 angstrom resolution and refined model of the photosynthetic reaction center from Rhodopseudomonas viridisJ Mol Biol246429457Google Scholar
  13. Des Marais, DJ 2000Evolution—When did photosynthesis emerge on earth?Science28917031705Google Scholar
  14. Dismukes, GC, Klimov, VV, Baranov, SV, Kozlov, YN, DasGupta, J, Tyryshkin, A 2001The origin of atmospheric oxygen on Earth: The innovation of oxygenic photosynthesisProc Natl Acad Sci USA9821702175Google Scholar
  15. Doolittle, WE 1999Phylogenetic classification and the universal treeScience28421242128CrossRefGoogle Scholar
  16. Feick, R, Ertlmaier, A, Ermler, U 1996Crystallization and X-ray analysis of the reaction center from the thermophilic green bacterium Chloroflexus aurantiacusFEBS Lett396161164Google Scholar
  17. Felsenstein, J 1989PHYLIP—Phylogeny inference package (version 3.2)Cladistics5164166Google Scholar
  18. Garczarek, L, Hess, WR, Holtzendorff, J, Staay, GWM, Partensky, F 2000Multiplication of antenna genes as a major adaptation to low light in a marine prokaryoteProc Natl Acad Sci USA9740984101Google Scholar
  19. Garczarek, L, Staay, GWM, Hess, WR, Le Gall, F, Partensky, F 2001Expression and phylogeny of the multiple antenna genes of the low-light-adapted strain Prochlorococcus marinus SS120 (Oxyphotobacteria)Plant Mol Biol46683693Google Scholar
  20. Gupta, RS, Mukhtar, T, Singh, B 1999Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus. cyanobacteria, Chlorobium tepidum and proteobacteria): Implications regarding the origin of photosynthesisMol Microbiol32893906Google Scholar
  21. Hall, TA 1999BIOEDIT: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NTNucleic Acid Symp Series419598Google Scholar
  22. Hauska, G, Schoedl, T, Remigy, H, Tsiotis, G 2001The reaction center of green sulfur bacteriaBiochim Biophys Acta Bioenerg1507260277Google Scholar
  23. Igarashi, N, Harada, J, Nagashima, S, Matsuura, K, Shimada, K, Nagashima, KVP 2001Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteriaJ Mol Evol52333341Google Scholar
  24. Ivancich, A, Mattioli, TA 1998A comparative study of conserved protein interactions of the primary electron donor in photosynthetic purple bacterial reaction centersPhotosynth Res55207215Google Scholar
  25. Ivancich, A, Artz, K, Williams, JC, Allen, JP, Mattioli, TA 1998Effects of hydrogen bonds on the redox potential and electronic structure of the bacterial primary electron donorBiochemistry371181211820Google Scholar
  26. Jones, DT, Taylor, WR, Thornton, JM 1994A mutation data matrix for transmembrane proteinsFEES Lett339269275Google Scholar
  27. Jordan, P, Fromme, P, Witt, HT, Klukas, O, Saenger, W, Krauss, N 2001Three-dimensional structure of cyanobacterial photosystem I at 2.5 angstrom resolutionNature411909917CrossRefPubMedGoogle Scholar
  28. LaRoche, J, Staay, GWM, Partensky, F, Ducret, A, Aebersold, R, Li, R, Golden, SS, Hiller, RG, Wrench, PM, Larkum, AWD, Green, BR 1996Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteinsProc Natl Acad Sci USA931524415248Google Scholar
  29. Liebl, U, Mockensturm-Wilson, M, Trost, JT, Brune, DC, Blankenship, RE, Vermaas, W 1993Single core polypeptide in the reaction center of the photosynthetic bacterium Heliobacillus mobilis—structural implications and relations to other photosystemsProc Natl Acad Sci USA9071247128Google Scholar
  30. Mann, NH, Cook, A, Millard, A, Bailey, S, Clokie, M 2003Bacterial photosynthesis genes in a virusNature424741Google Scholar
  31. Mathis, P 1990Compared structure of plant and bacterial photosynthetic reaction centers—evolutionary implicationsBiochim Biophys Acta1018163167Google Scholar
  32. Mix, LJ, Harmer, TL, Cavanaugh, CM 2004Sequence of the core antenna domain from the anoxygenic phototroph Meliophilum fasciatum: Implications for diversity of reaction Center type ICurr Microbiol48438440Google Scholar
  33. McFadden, GI 2001Primary and secondary endosymbiosis and the origin of plastidsJ Phycol37951959CrossRefGoogle Scholar
  34. Mulkidjanian, AY, Junge, W 1997On the origin of photosynthesis as inferred from sequence analysis—A primordial UV-protector as common ancestor of reaction centers and antenna proteinsPhotosynth Res512742Google Scholar
  35. Neerken, S, Amesz, J 2001The antenna reaction center complex of heliobacteria: Composition, energy conversion and electron transferBiochim Biophys Acta Bioenerg1507278290Google Scholar
  36. Nitschke, W, Rutherford, AW 1991Photosynthetic reaction centers—Variations on a common structural themeTrends Biochem Sci16241245Google Scholar
  37. Otsuka, J, Miyachi, H, Horimoto, K 1992Structure model of core proteins in photosystem I inferred from the comparison with those in photosystem II and bacteria: An application of principal component analysis to detect the similar regions between distantly related families of proteinsBiochim Biophys Acta1118194210Google Scholar
  38. Pace, NR 1996New perspective on the natural microbial world: Molecular microbial ecologyASM News62463470Google Scholar
  39. Raymond, J, Zhaxybayeva, O, Gogarten, JP, Gerdes, SY, Blankenship, RE 2002Whole genome analysis of photosynthetic prokaryotesScience29816161620CrossRefPubMedGoogle Scholar
  40. Redding, K, MacMillan, F, Leibl, W, Brettel, K, Hanley, J, Rutherford, AW, Breton, J, Rochaix, JD 1998A systematic survey of conserved histidines in the core subunits of Photosystem I by site-directed mutagenesis reveals the likely axial ligands of P-700EMBO J175060Google Scholar
  41. Rhee, KH, Morriss, EP, Barber, J, Kuhlbrandt, W 1998Three-dimensional structure of the plant photosystem II reaction centre at 8 angstrom resolutionNature396283286Google Scholar
  42. Schubert, WD, Klukas, O, Saenger, W, Witt, HT, Fromme, P, Krauss, N 1998A common ancestor for oxygenic and anoxygenic photosynthetic systems: A comparison based on the structural model of photosystem IJ Mol Biol280297314Google Scholar
  43. Shiozawa, JA, Lottspeich, F, Oesterhelt, D, Feick, R 1989The primary structure of the Chloroflexus aurantiacus reaction-center polypeptidesEur J Biochem1807584Google Scholar
  44. Staay, GWM, Yurkova, N, Green, BR 1998The 38 kDa chlorophyll a/b protein of the prokaryote Prochlorothrix hollandica is encoded by a divergent pcb genePlant Mol Biol36709716Google Scholar
  45. Niel, CB 1944The culture, general physiology, morphology, and general classification of the non-sulfur purple and brown bacteriaBacteriol Rev81118Google Scholar
  46. Xiong, J, Inoue, K, Bauer, CE 1998Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilisProc Natl Acad Sci USA951485114856Google Scholar
  47. Xiong, J, Fischer, WM, Inoue, K, Nakahara, M, Bauer, CE 2000Molecular evidence for the early evolution of photosynthesisScience28917241730CrossRefPubMedGoogle Scholar
  48. Zouni, A, Witt, HT, Kern, J, Fromme, P, Krauss, N, Saenger, W, Orth, P 2001Crystal structure of photosystem II from Synechococcus elongatus at 3.8 angstrom resolutionNature409739743Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Lucas J. Mix
    • 1
    • 2
  • David Haig
    • 1
  • Colleen M. Cavanaugh
    • 1
  1. 1.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA
  2. 2.Lucas J. MixBerkeleyUSA

Personalised recommendations