Skip to main content
Log in

An Overlooked Riddle of Life’s Origins: Energy-Dependent Nucleic Acid Unzipping

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The imposing progress in understanding contemporary life forms on Earth and in manipulating them has not been matched by a comparable progress in understanding the origins of life. This paper argues that a crucial problem of unzipping of the double helix molecule of nucleic acid during its replication has been underrated, if not plainly overlooked, in the theories of life’s origin and evolution. A model is presented of how evolution may have solved the problem in its early phase. Similar to several previous models, the model envisages the existence of a protocell, in which osmotic disbalance is being created by accumulation of synthetic products resulting in expansion and division of the protocell. Novel in the model is the presence in the protocell of a double-stranded nucleic acid, with each of its two strands being affixed by its 3′-terminus to the opposite sides of the membrane of a protocell. In the course of the protocell expansion, osmotic force is utilized to pull the two strands longitudinally in opposite directions, unzipping the helix and partitioning the strands between the two daughter protocells. The model is also being used as a background for arguments of why life need operate in cycles. Many formal models of life’s origin and evolution have not taken into account the fact that logical possibility does not equal thermodynamic feasibility. A system of self-replication has to consist of both replicators and replicants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G Allen (1970) ArticleTitleNatural selection and the origin of life. Persp Biol Med 14 109–126 Occurrence Handle1:STN:280:CS6D28nlsVE%3D

    CAS  Google Scholar 

  2. PW Anderson (1983) ArticleTitleSuggested model for prebiotic evolution: The use of chaos. Proc Natl Acad Sci USA 80 3386–3390 Occurrence Handle1:CAS:528:DyaL3sXktFyhtbk%3D Occurrence Handle6190177

    CAS  PubMed  Google Scholar 

  3. H Atlan (1999) La fin de “tout génetique”? Vers de nouveaux paradigmes en biologie. INRA Paris 54

    Google Scholar 

  4. PA Bachmann PL Luisi J Lang (1992) ArticleTitleAutocatalytic self-replicating micelles as models for prebiotic structures. Nature 357 57–59 Occurrence Handle1:CAS:528:DyaK38XltVKntLo%3D

    CAS  Google Scholar 

  5. U Bockelmann Ph Thomen B Essavaz-Roulet V Vlasnoff F Heslot (2002) ArticleTitleUnzipping DNA with optical tweezers: High sequence sensitivity and force flips. Biophys J 82 1537–1553 Occurrence Handle1:CAS:528:DC%2BD38Xit1KjtLY%3D Occurrence Handle11867467

    CAS  PubMed  Google Scholar 

  6. T Boland BD Ratner (1995) ArticleTitleDirect measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy. Proc Natl Acad Sci USA 92 5297–5301 Occurrence Handle1:CAS:528:DyaK2MXmtFOhtb0%3D Occurrence Handle7777501

    CAS  PubMed  Google Scholar 

  7. JA Borowiec (1996) DNA helicases. DNA replication in eukaryotic cells. Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY

    Google Scholar 

  8. T Cavalier-Smith (1987) ArticleTitleThe origin of cells: A symbiosis between genes, catalysts, and membranes. Cold Spring Harb Symp Quant Biol 52 805–823 Occurrence Handle1:CAS:528:DyaL1cXkvVynsbo%3D Occurrence Handle3454290

    CAS  PubMed  Google Scholar 

  9. Chadwick AV (2001) Abiogenic origin of life: A theory in crisis. http://origins.swau.edu/papers/life/chadwick/default.html

  10. DW Deamer (1997) ArticleTitleThe first living systems: A bioenergetic perspective. Microbiol Mol Biol Rev 61 239–261 Occurrence Handle1:CAS:528:DyaK2sXktFGqtb4%3D Occurrence Handle9184012

    CAS  PubMed  Google Scholar 

  11. C De Duve (1991) Blueprint for a cell: The nature and origin of life. Patterson Burlington

    Google Scholar 

  12. M Delbrück (1978) Mind from matter. WH Heidcamp (Eds) Nature of life. University Park Press Baltimore 147

    Google Scholar 

  13. G Dover (1999) ArticleTitleLooping the evolutionary loop. Nature 399 217–218 Occurrence Handle10.1038/20350 Occurrence Handle1:CAS:528:DyaK1MXjsFyksb0%3D

    Article  CAS  Google Scholar 

  14. JP Dworkin DW Deamer SA Sandford LJ Allamandola (2001) ArticleTitleSelf-assembling amphiphilic molecules: Synthesis in simulated interstellar/precomentary ices. Proc Natl Acad Sci USA 98 815–819 Occurrence Handle10.1073/pnas.98.3.815 Occurrence Handle1:CAS:528:DC%2BD3MXht1Snurg%3D Occurrence Handle11158552

    Article  CAS  PubMed  Google Scholar 

  15. F Dyson (1999) Origins of life, 2nd ed. Cambridge University Press Cambridge

    Google Scholar 

  16. EH Egelman (2001) ArticleTitlePumping DNA. Nature 409 573–574 Occurrence Handle10.1038/35054652 Occurrence Handle1:CAS:528:DC%2BD3MXhtVygsb8%3D Occurrence Handle11214304

    Article  CAS  PubMed  Google Scholar 

  17. B Essevaz-Roulet U Bockelmann F Heslot (1997) ArticleTitleMechanical separation of the complementary strands of DNA. Proc Natl Acad Sci USA 94 11935–11940 Occurrence Handle10.1073/pnas.94.22.11935 Occurrence Handle1:CAS:528:DyaK2sXntFSms7Y%3D Occurrence Handle9342340

    Article  CAS  PubMed  Google Scholar 

  18. JB Fenn (1982) Engines, energy and entropy. Freeman New York

    Google Scholar 

  19. W Fontana P Schuster (1998) ArticleTitleContinuity in evolution: On the nature of transitions. Science 280 1451–1455 Occurrence Handle10.1126/science.280.5368.1451 Occurrence Handle9603737

    Article  PubMed  Google Scholar 

  20. CV Forst (1998) ArticleTitleMolecular evolution: A theory approaches experiments. J Biotechnol 64 101–118 Occurrence Handle10.1016/S0168-1656(98)00107-2 Occurrence Handle1:CAS:528:DyaK1cXntV2rs7w%3D

    Article  CAS  Google Scholar 

  21. MT Ghiselin (1987) ArticleTitleReplicators and replicanda. Bioeconomics and the metaphysics of selection. J Soc Biol Struct 10 361–369

    Google Scholar 

  22. JC Guatelli KM Whitfield DY Kwon KJ Barringer DD Richman TR Gingeras (1990) ArticleTitleIsothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci USA 87 1874–1878 Occurrence Handle1:CAS:528:DyaK3cXhsFejsLY%3D Occurrence Handle2308948

    CAS  PubMed  Google Scholar 

  23. WK Johnston PJ Unrau MS Lawrence ME Glasner DP Bartel (2001) ArticleTitleRNA-catalyzed RNA polymerization: Accurate and general RNA-templated primer extension. Science 292 1319–1325 Occurrence Handle1:CAS:528:DC%2BD3MXjvVGjsbg%3D Occurrence Handle11358999

    CAS  PubMed  Google Scholar 

  24. GF Joyce (1989) ArticleTitleRNA evolution and the origin of life. Nature 338 217–224 Occurrence Handle10.1038/338217a0 Occurrence Handle1:CAS:528:DyaL1MXhs1yhsrk%3D Occurrence Handle2466202

    Article  CAS  PubMed  Google Scholar 

  25. SA Kauffman (1993) The origin of order. Self-organization and selection in evolution. Oxford University Press New York

    Google Scholar 

  26. AL Koch (1985) ArticleTitlePrimeval cells: Possible energy-generating and cell-division mechanisms. J Mol Evol 21 270–277 Occurrence Handle1:CAS:528:DyaL2MXktFyks7c%3D

    CAS  Google Scholar 

  27. A Kornberg TA Baker (1992) DNA replication. Freeman New York

    Google Scholar 

  28. H Kuhn (1972) ArticleTitleSelbstorganisation molekularer Systeme und die Evolution des genetischen Apparats. Angew Chem 84 838–862 Occurrence Handle1:CAS:528:DyaK38XmtV2kurk%3D Occurrence Handle1429685

    CAS  PubMed  Google Scholar 

  29. H Kuhn (1988) ArticleTitleOrigin of life and physics: Diversified macrostructure—Inducement to form information-carrying and knowledge-accumulating systems. J Res Dev 32 37–46 Occurrence Handle1:CAS:528:DyaL1cXlvVGrtLY%3D

    CAS  Google Scholar 

  30. N Lahav (1999) Biogenesis: Theories of life’s origin. Oxford University Press Oxford

    Google Scholar 

  31. CG Langton C Taylor JD Farmer S Rasmussen (1992) Artificial life II. Addison–Wesley Redwood City, CA

    Google Scholar 

  32. DH Lee JR Granja JA Martinez K Severin MR Ghadiri (1996) ArticleTitleA self-replicating peptide. Nature 382 525–528 Occurrence Handle10.1038/382525a0 Occurrence Handle1:CAS:528:DyaK28XkvFGjt78%3D Occurrence Handle8700225

    Article  CAS  PubMed  Google Scholar 

  33. DH Lee K Severin MR Ghadiri (1997) ArticleTitleAutocatalytic networks: The transition from molecular self-replication to molecular ecosystems. Curr Opin Chem Biol 1 491–496 Occurrence Handle10.1016/S1367-5931(97)80043-9 Occurrence Handle1:CAS:528:DyaK1cXhtV2qsbs%3D Occurrence Handle9667892

    Article  CAS  PubMed  Google Scholar 

  34. GU Lee LA Chrisey RJ Colton (1994) ArticleTitleDirect measurement of the forces between complementary strands of DNA. Science 266 771–773 Occurrence Handle1:CAS:528:DyaK2MXitVGgsL0%3D Occurrence Handle7973628

    CAS  PubMed  Google Scholar 

  35. R Lewontin (1992) ArticleTitleThe dream of the human genome. NY Rev Books 28 March 31–40

    Google Scholar 

  36. N Maizels AM Weiner (1994) ArticleTitlePhylogeny from function: Evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc Natl Acad Sci USA 91 6729–6734 Occurrence Handle1:CAS:528:DyaK2cXlslehsLY%3D Occurrence Handle8041690

    CAS  PubMed  Google Scholar 

  37. J Maynard Smith (1990) ArticleTitleModels of a dual inheritance system. J Theor Biol 143 41–53 Occurrence Handle1:STN:280:By%2BB1MvmsFQ%3D Occurrence Handle2359317

    CAS  PubMed  Google Scholar 

  38. J Maynard Smith E Szathmáry (1995) The major transitions in evolution. Freeman New York

    Google Scholar 

  39. HJ Morowitz B Heinz DW Deamer (1988) ArticleTitleThe chemical logic of a minimum protocell. Orig Life Evol Biosphere 18 281–287 Occurrence Handle1:STN:280:BiaC2cvltlU%3D

    CAS  Google Scholar 

  40. LE Orgel (1998) ArticleTitleThe origin of life — a review of facts and speculations. Trends Biochem Sci 23 491–495 Occurrence Handle10.1016/S0968-0004(98)01300-0 Occurrence Handle1:CAS:528:DyaK1MXhtVeruw%3D%3D Occurrence Handle9868373

    Article  CAS  PubMed  Google Scholar 

  41. A Pohorille C Chipot MH New MA Wilson (1996) ArticleTitleMolecular modeling of protocellular functions. Proc Symp Biocomput 1996 550–569

    Google Scholar 

  42. AM Poole DC Jeffares D Penny (1998) ArticleTitleThe path from the RNA world. J Mol Evol 46 1–17 Occurrence Handle1:CAS:528:DyaK1cXks1WisA%3D%3D Occurrence Handle9419221

    CAS  PubMed  Google Scholar 

  43. RO Poyton (1983) ArticleTitleMemory and membranes: The expression of genetic and spatial memory during the assembly of organelle microcompartments. Modern Cell Biol 2 15–72 Occurrence Handle1:CAS:528:DyaL3sXltVSqurs%3D

    CAS  Google Scholar 

  44. MH Rief H Clausen-Schaumann HE Gaub (1999) ArticleTitleSequence-dependent mechanics of single DNA molecules. Nature Struct Biol 6 346–349 Occurrence Handle10.1038/7582 Occurrence Handle1:CAS:528:DyaK1MXisVChsbo%3D

    Article  CAS  Google Scholar 

  45. RS Root-Bernstein PF Dillon (1997) ArticleTitleMolecular complementarity I: The complementarity theory of the origin and evolution of life. J Theor Biol 188 447–479 Occurrence Handle10.1006/jtbi.1997.0476 Occurrence Handle1:CAS:528:DyaK1cXitFal Occurrence Handle9367734

    Article  CAS  PubMed  Google Scholar 

  46. D Segré D Ben-Eli DW Deamer D Lancet (2001) ArticleTitleThe lipid world. Orig Life Evol Biosphere 31 119–145 Occurrence Handle10.1023/A:1006746807104

    Article  Google Scholar 

  47. R Shapiro (1986) Origins: A skeptic’s guide to the creation of life on Earth. Simon & Schuster New York

    Google Scholar 

  48. JW Szostak DP Bartel PL Luisi (2001) ArticleTitleSynthesizing life. Nature 409 387–390 Occurrence Handle10.1038/35053176 Occurrence Handle1:CAS:528:DC%2BD3MXmslSjtw%3D%3D

    Article  CAS  Google Scholar 

  49. TH Tahirov D Temiakov M Anikin V Patian WT McAllister DG Vassylyev S Yokoyama (2002) ArticleTitleStructure of a T7 RNA polymerase elongation complex at 2.9 Å resolution. Nature 420 43–50 Occurrence Handle10.1038/nature01129 Occurrence Handle1:CAS:528:DC%2BD38XosVCmu74%3D Occurrence Handle12422209

    Article  CAS  PubMed  Google Scholar 

  50. C Taylor D Jefferson (1994) ArticleTitleArtificial life as a tool for biological inquiry. Artificial Life 1 1–13

    Google Scholar 

  51. CB Thaxton WL Bradley RL Olsen (1992) The mystery of life origin. Lewis and Stanley Dallas

    Google Scholar 

  52. Vaneechoutte M (1988) The replicator: A misnomer. Conceptual implications for genetics ad memetics. http://pespmc1.vub.ac.be/Conf/MemePap/Vaneechoutte.html

  53. E Van Nimwegen JP Crutchfield M Huynen (1999) ArticleTitleNeutral evolution of mutational robustness. Proc Natl Acad Sci USA 96 9716–9720 Occurrence Handle10.1073/pnas.96.17.9716 Occurrence Handle1:CAS:528:DyaK1MXlsVymtrk%3D Occurrence Handle10449760

    Article  CAS  PubMed  Google Scholar 

  54. PH Von Hippel E Delagoutte (2001) ArticleTitleA general model for nucleic acid helicases and their “coupling” within macromolecular machines. Cell 104 177–119 Occurrence Handle1:CAS:528:DC%2BD3MXis1Kmu7w%3D Occurrence Handle11207360

    CAS  PubMed  Google Scholar 

  55. G Von Kiedrowski (1986) ArticleTitleA self-replicating hexadeoxynucleotide. Angew Chem Int Ed Engl 25 932–934 Occurrence Handle10.1002/anie.198609322

    Article  Google Scholar 

  56. J Von Neumann (1966) The theory of self-reproducing automata. University of Illinois Press Urbana

    Google Scholar 

  57. G Wächtershäuser (1990) ArticleTitleEvolution of the first metabolic cycles. Proc Natl Acad Sci USA 87 200–204

    Google Scholar 

  58. P Walde R Wick M Fresta A Mangone PL Luisi (1994) ArticleTitleAutopoietic self-reproduction of fatty acid vesicles. J Am Chem Soc 116 11649–11654 Occurrence Handle1:CAS:528:DyaK2cXntVyqsb8%3D

    CAS  Google Scholar 

  59. TH Wilson ECC Lin (1980) ArticleTitleEvolution of membrane bioenergetics. J Supramol Struct 13 42l–446

    Google Scholar 

  60. EA Winter J Rebek Jr (1996) ArticleTitleAutocatalysis and the generation of self-replicating systems. Acta Chim Scand 50 469–485

    Google Scholar 

  61. A Weiss (1981) ArticleTitleReplication and evolution in inorganic systems. Angew Chem Int Ed Engl 20 850–860 Occurrence Handle10.1002/anie.198108501

    Article  Google Scholar 

  62. C Wills J Bada (2000) The spark of life: Darwin and the primeval soup. Perseus Cambridge, MA

    Google Scholar 

  63. C Woese (1998) ArticleTitleThe universal ancestor. Proc Nat Acad Sci USA 95 6854–6859 Occurrence Handle10.1073/pnas.95.12.6854 Occurrence Handle1:CAS:528:DyaK1cXjslynu7w%3D Occurrence Handle9618502

    Article  CAS  PubMed  Google Scholar 

  64. CR Woese (2002) ArticleTitleOn the evolution of cells. Proc Nat Acad Sci USA 99 8742–8747 Occurrence Handle1:CAS:528:DC%2BD38XltF2hsbc%3D Occurrence Handle12077305

    CAS  PubMed  Google Scholar 

  65. H Yanagawa Y Ogawa K Kojima M Ito (1988) ArticleTitleConstruction of protocellular structures under simulated primitive earth conditions. Orig Life Evol Biosphere 18 179–207 Occurrence Handle1:CAS:528:DyaL1MXjsFKrtA%3D%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Kováč.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kováč, L., Nosek, J. & Tomáška, L. An Overlooked Riddle of Life’s Origins: Energy-Dependent Nucleic Acid Unzipping . J Mol Evol 57 (Suppl 1), S182–S189 (2003). https://doi.org/10.1007/s00239-003-0026-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-0026-z

Keywords

Navigation