Skip to main content
Log in

Molecular Clocks and Explosive Radiations

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Molecular data are ideal for exploring evolutionary history because of its universality, stochasticity, and abundance. These features provide a means of exploring the evolutionary history of all organisms (including those that do not tend to leave fossils), potentially within a statistical framework that allows testing of evolutionary hypotheses. However, the discrepancy between molecular and paleontological dates for three key “explosive” radiations inferred from the fossil record—the Cambrian explosion of animal phyla and the post-KT radiations of modern orders of mammals and birds—have led to a reexamination of the assumptions on which molecular dates are based. Could variation in the rate of molecular evolution, perhaps associated with “explosive” radiations, cause overestimation of diversification dates? Here I examine four hypothetical causes of fast molecular rates in explosive radiations—body size, morphological rate, speciation rate, and ecological diversification—using available empirical evidence on patterns of variation in rate of molecular evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. JD Archibald (1999a) ArticleTitleMolecular dates and the mammalian radiation. Trends Ecol Evol 14 278

    Google Scholar 

  2. JD Archibald (1999b) ArticleTitlePruning and grafting on the mammalian phylogenetic tree. Acta Palaeontol Polonica 44 220–222

    Google Scholar 

  3. JC Avise (1994) Molecular markers, natural history and evolution. Chapman & Hall New York

    Google Scholar 

  4. TG Barraclough V Savolainen (2001) ArticleTitleEvolutionary rates and species diversity in flowering plants. Evolution 55 677–683 Occurrence Handle1:CAS:528:DC%2BD3MXktleqtL0%3D Occurrence Handle11392385

    CAS  PubMed  Google Scholar 

  5. TG Barraclough PH Harvey S Nee (1996) ArticleTitleRate of rbcL gene sequence evolution and species diversification in flowering plants (angiosperms). Proc R Soc Lond B 263 589–591

    Google Scholar 

  6. TG Barraclough AP Vogler PH Harvey (1998) ArticleTitleRevealing the factors that promote speciation. Phil Trans R Soc Lond B 353 241–249 Occurrence Handle10.1098/rstb.1998.0206

    Article  Google Scholar 

  7. L Bromham (2002) ArticleTitleMolecular clocks in reptiles: Life history influences rate of molecular evolution. Mol Biol Evol 19 302–309 Occurrence Handle1:CAS:528:DC%2BD38XitFSnsLo%3D Occurrence Handle11861889

    CAS  PubMed  Google Scholar 

  8. L Bromham (2003) ArticleTitleWhat can DNA tell us about the Cambrian explosion. Integrat Comp Biol (in press) . .

    Google Scholar 

  9. L Bromham A Rambaut PH Harvey (1996) ArticleTitleDeterminants of rate variation in mammalian DNA sequence evolution. J Mol Evol 43 610–621 Occurrence Handle1:CAS:528:DyaK2sXislKjtg%3D%3D Occurrence Handle8995058

    CAS  PubMed  Google Scholar 

  10. L Bromham A Rambaut R Fortey A Cooper D Penny (1998) ArticleTitleTesting the Cambrian explosion hypothesis by using a molecular dating technique. Proc Natl Acad Sci USA 95 12386–9 Occurrence Handle10.1073/pnas.95.21.12386 Occurrence Handle1:CAS:528:DyaK1cXmsl2rur0%3D Occurrence Handle9770496

    Article  CAS  PubMed  Google Scholar 

  11. L Bromham M Woolfit MSY Lee A Rambaut (2002) ArticleTitleTesting the relationship between morphological and molecular rates of change along phylogenies. Evolution 56 1921–1930 Occurrence Handle12449479

    PubMed  Google Scholar 

  12. LD Bromham MD Hendy (2000) ArticleTitleCan fast early rates reconcile molecular dates to the Cambrian explosion? Proc R Soc Lond B 267 1041–1047 Occurrence Handle10.1098/rspb.2000.1108 Occurrence Handle1:STN:280:DC%2BD3M%2FhsF2rtg%3D%3D Occurrence Handle10874755

    Article  CAS  PubMed  Google Scholar 

  13. LD Bromham MJ Phillips D Penny (1999) ArticleTitleGrowing up with dinosaurs: Molecular dates and the mammalian radiation. Trends Ecol Evol 14 113–118 Occurrence Handle10.1016/S0169-5347(98)01507-9 Occurrence Handle10322512

    Article  PubMed  Google Scholar 

  14. LD Bromham A Rambaut MD Hendy D Penny (2000) ArticleTitleThe power of relative rates tests depends on the data. J Mol Evol 50 296–301 Occurrence Handle1:CAS:528:DC%2BD3cXivVKgtLY%3D Occurrence Handle10754073

    CAS  PubMed  Google Scholar 

  15. BH-J Chang LC Shimmin S-K Shyue D Hewett-Emmett W-H Li (1994) ArticleTitleWeak male-driven molecular evolution in rodents. Proc Natl Acad Sci USA 91 827–831 Occurrence Handle1:CAS:528:DyaK2cXitV2ktLo%3D Occurrence Handle8290607

    CAS  PubMed  Google Scholar 

  16. S Conway Morris (1998) ArticleTitleEarly metazoan evolution: Reconciling paleontology and molecular biology. Am Zool 38 867–877

    Google Scholar 

  17. D Dasheveg DE Russell (1988) ArticleTitlePalaeocene and Eocene Mixodontia (Mammalia, Glires) of Mongolia and China. Palaeontology 31 129–164

    Google Scholar 

  18. S Easteal C Collett (1994) ArticleTitleConsistent variation in amino-acid substitution rate, despite uniformity of mutation rate: protein evolution in mammals is not neutral. Mol Biol Evol 11 643–647 Occurrence Handle1:CAS:528:DyaK2cXltVGjtbg%3D Occurrence Handle8078402

    CAS  PubMed  Google Scholar 

  19. H Ellegren AK Fridolfsson (1997) ArticleTitleMale-driven evolution of DNA sequences in birds. Nature Genet 17 182–184 Occurrence Handle1:CAS:528:DyaK2sXmsFant7c%3D Occurrence Handle9326938

    CAS  PubMed  Google Scholar 

  20. X Gu W-H Li (1992) ArticleTitleHigher rates of amino acid substitution in rodents than in man. Mol Phylogenet Evol 1 211–214 Occurrence Handle1342937

    PubMed  Google Scholar 

  21. SB Hedges PH Parker CG Sibley S Kumar (1996) ArticleTitleContinental breakup and the diversification of birds and mammals. Nature 381 226–229 Occurrence Handle10.1038/381226a0 Occurrence Handle1:CAS:528:DyaK28XjtVKiu7o%3D Occurrence Handle8622763

    Article  CAS  PubMed  Google Scholar 

  22. CM Janis JA Effinger JA Harrison JG Honey DG Kron B Lander E Manning DR Prothero MS Stevens RK Stucky SD Webb DB Wright (1998) Artiodactyla. CM Janis KM Scott LL Jacobs (Eds) Evolution of Tertiary mammals of North America, Volume 1: Terrestrial carnivores, ungulates, and ungulatelike mammals. Cambridge University Press Cambridge 337–357

    Google Scholar 

  23. KP Johnson J Seger (2001) ArticleTitleElevated rates of nonsynonymous substitution in island birds. Mol Biol Evol 18 874–881 Occurrence Handle1:CAS:528:DC%2BD3MXjtFykt7Y%3D Occurrence Handle11319271

    CAS  PubMed  Google Scholar 

  24. M Kimura (1983) The neutral theory of molecular evolution. Cambridge University Press Cambridge

    Google Scholar 

  25. H Kishino JL Thorne WJ Bruno (2001) ArticleTitlePerformance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol 18 352–361 Occurrence Handle1:CAS:528:DC%2BD3MXhvVKrtro%3D Occurrence Handle11230536

    CAS  PubMed  Google Scholar 

  26. B Korber M Muldoon J Theiler F Gao R Gupta A Lapedes BH Hahn S Wolinsky T Bhattacharya (2000) ArticleTitleTiming the ancestor of the HIV-1 pandemic strains. Science 288 1789–1796 Occurrence Handle10.1126/science.288.5472.1789 Occurrence Handle1:CAS:528:DC%2BD3cXjvFCisro%3D Occurrence Handle10846155

    Article  CAS  PubMed  Google Scholar 

  27. S Kumar SB Hedges (1998) ArticleTitleA molecular timescale for vertebrate evolution. Nature 392 917–920 Occurrence Handle1:CAS:528:DyaK1cXjtV2jur8%3D Occurrence Handle9582070

    CAS  PubMed  Google Scholar 

  28. MSY Lee (1999) ArticleTitleShortening the phylogenetic fuse. Trends Ecol Evol 13 323 Occurrence Handle10.1016/S0169-5347(98)01377-9

    Article  Google Scholar 

  29. C-K Li RW Wilson MR Dawson L Krishtalka (1987) The origins of rodents and lagomorphs. HH Genoways (Eds) Current mammology. Plenum New York 97–108

    Google Scholar 

  30. W-H Li DL Ellesworth J Krushkal BH-J Chang D Hewett-Emmett (1996) ArticleTitleRates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol Phylogenet Evol 5 182–187 Occurrence Handle1:CAS:528:DyaK28XitVyrsbo%3D Occurrence Handle8673286

    CAS  PubMed  Google Scholar 

  31. O Madsen M Scally CJ Douady DJ Kao RW DeBry R Adkins HM Amrine MJ Stanhope WW de Jong MS Springer (2001) ArticleTitleParallel adaptive radiations in two major clades of placental mammals. Nature 409 610–614 Occurrence Handle1:CAS:528:DC%2BD3MXhtVygur4%3D

    CAS  Google Scholar 

  32. AP Martin (1995) ArticleTitleMetabolic rate and directional nucleotide substitution in animal mitochondrial DNA. Mol Biol Evol 12 1124–1131 Occurrence Handle1:CAS:528:DyaK2MXovVOisLw%3D Occurrence Handle8524045

    CAS  PubMed  Google Scholar 

  33. AP Martin (1999) ArticleTitleSubstitution rates of organelle and nuclear genes in sharks: Implicating metabolic rate (again). Mol Biol Evol 16 996–1002 Occurrence Handle1:CAS:528:DyaK1MXksFOlsLw%3D Occurrence Handle10406116

    CAS  PubMed  Google Scholar 

  34. AP Martin SR Palumbi (1993) ArticleTitleBody size, metabolic rate, generation time and the molecular clock. Proc Natl Acad Sci USA 90 4087–4091 Occurrence Handle1:CAS:528:DyaK3sXkt1ehs7o%3D

    CAS  Google Scholar 

  35. RD Martin (1990) Primate origins and evolution: A phylogenetic reconstruction. Chapman and Hall London

    Google Scholar 

  36. J Meng AR Wyss MR Dawson R Zhai (1994) ArticleTitlePrimitive fossil rodent from Inner Mongolia and its implications for mammalian phylogeny. Nature 370 134–136 Occurrence Handle10.1038/370134a0 Occurrence Handle1:STN:280:ByuB1MvgtF0%3D Occurrence Handle8022481

    Article  CAS  PubMed  Google Scholar 

  37. AØ Mooers PH Harvey (1994) ArticleTitleMetabolic rate, generation time and the rate of molecular evolution in birds. Mol Phylogenet Evol 3 344–350 Occurrence Handle10.1006/mpev.1994.1040 Occurrence Handle1:CAS:528:DyaK2MXjsVWksLk%3D Occurrence Handle7697191

    Article  CAS  PubMed  Google Scholar 

  38. T Ohta (1987) ArticleTitleVery slightly deleterious mutations and the molecular clock. J Mol Evol 26 1–6 Occurrence Handle1:CAS:528:DyaL1cXhtVynt7k%3D

    CAS  Google Scholar 

  39. T Ohta (1993) ArticleTitleAn examination of the generation time effect on molecular evolution. Proc Natl Acad Sci USA 90 10676–10680 Occurrence Handle1:CAS:528:DyaK2cXisF2gtg%3D%3D Occurrence Handle8248159

    CAS  PubMed  Google Scholar 

  40. KE Omland (1997) ArticleTitleCorrelated rates of molecular and morphological evolution. Evolution 51 1381–1393

    Google Scholar 

  41. SP Otto MC Whitlock (1997) ArticleTitleThe probability of fixation in populations with changing size. Genetics 146 723–733 Occurrence Handle1:STN:280:ByiA387ivF0%3D Occurrence Handle9178020

    CAS  PubMed  Google Scholar 

  42. D Papadopoulos D Schneider J Meier-Eiss W Arber RE Lenski M Blot (1999) ArticleTitleGenomic evolution during a 10,000-generation experiment with bacteria. Proc Natl Acad Sci USA 96 3807–3812 Occurrence Handle10.1073/pnas.96.7.3807 Occurrence Handle1:CAS:528:DyaK1MXjslChsrY%3D Occurrence Handle10097119

    Article  CAS  PubMed  Google Scholar 

  43. D Penny RP Murray-McIntosh MD Hendy (1998) ArticleTitleEstimating times of divergence with a change of rate: The orangutan/African ape divergence. Mol Biol Evol 15 608–610 Occurrence Handle1:CAS:528:DyaK1cXislensLs%3D Occurrence Handle9580991

    CAS  PubMed  Google Scholar 

  44. A Rambaut L Bromham (1998) ArticleTitleEstimating divergence dates from molecular sequences. Mol Biol Evol 15 442–448 Occurrence Handle1:CAS:528:DyaK1cXitlKiu70%3D Occurrence Handle9549094

    CAS  PubMed  Google Scholar 

  45. DM Rand (1994) ArticleTitleThermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends Ecol Evol 9 125–131 Occurrence Handle10.1016/0169-5347(94)90176-7

    Article  Google Scholar 

  46. M Robinson M Gouy C Gautier D Mouchirod (1998) ArticleTitleSensitivity of relative rates tests to taxonomic sampling. Mol Biol Evol 15 1091–1098 Occurrence Handle1:CAS:528:DyaK1cXls1Kis74%3D Occurrence Handle9729873

    CAS  PubMed  Google Scholar 

  47. KD Rose (1996) ArticleTitleOn the origin of the order Artiodactyla. Proc Natl Acad Sci USA 93 1705–1709 Occurrence Handle10.1073/pnas.93.4.1705 Occurrence Handle1:CAS:528:DyaK28Xht1entLs%3D Occurrence Handle11607634

    Article  CAS  PubMed  Google Scholar 

  48. B Runnegar (1982) ArticleTitleA molecular-clock date for the origin of the animal phyla. Lethaia 15 199–205

    Google Scholar 

  49. MJ Sanderson (2002) ArticleTitleEstimating absolute rates of molecular evolution and divergence times: A penalized likelihood approach. Mol Biol Evol 19 101–109 Occurrence Handle1:CAS:528:DC%2BD38XhtFCitQ%3D%3D Occurrence Handle11752195

    CAS  PubMed  Google Scholar 

  50. S Scherer (1989) ArticleTitleThe relative-rate test of the molecular clock hypothesis: A note of caution. Mol Biol Evol 6 436–441 Occurrence Handle1:CAS:528:DyaL1MXltlShs74%3D Occurrence Handle2615642

    CAS  PubMed  Google Scholar 

  51. J Schmitz RFA Moritz (1998) ArticleTitleSociality and the rate of rDNA sequence evolution in wasps (Vespidae) and honeybees (Apis). J Mol Evol 47 606–612 Occurrence Handle1:CAS:528:DyaK1cXntFWhtr4%3D Occurrence Handle9797411

    CAS  PubMed  Google Scholar 

  52. LC Shimmin BH-J Chang W-H Li (1993) ArticleTitleMale-driven evolution of DNA sequences. Nature 362 745–747 Occurrence Handle1:CAS:528:DyaK3sXkt1Wqtr8%3D Occurrence Handle8469284

    CAS  PubMed  Google Scholar 

  53. M Silva JA Downing (1995) CRC handbook of mammalian body masses. CRC Press Boca Raton, FL

    Google Scholar 

  54. AB Smith KJ Peterson (2002) ArticleTitleDating the time of origin of major clades: Molecular clocks and the fossil record. Annu Rev Earth Planet Sci 30 65–88 Occurrence Handle10.1146/annurev.earth.30.091201.140057 Occurrence Handle1:CAS:528:DC%2BD38Xos1GjtLs%3D

    Article  CAS  Google Scholar 

  55. RK Stucky (1998) Eocene bunodont and bunoselenodont Artiodactyla (“dichobunids”). CM Janis KM Scott LL Jacobs (Eds) Evolution of Tertiary mammals of North America, Volume 1: Terrestrial carnivores, ungulates, and ungulatelike mammals. Cambridge University Press Cambridge 358–374

    Google Scholar 

  56. F Tajima (1993) ArticleTitleSimple methods for testing the molecular evolutionary clock hypothesis. Genetics 135 599–607 Occurrence Handle1:CAS:528:DyaK2cXlt1yhtbw%3D Occurrence Handle8244016

    CAS  PubMed  Google Scholar 

  57. J Valentine D Jablonski D Erwin (1999) ArticleTitleFossils, molecules and embryos: New perspectives on the Cambrian explosion. Development 126 851–859 Occurrence Handle1:CAS:528:DyaK1MXitF2jsro%3D Occurrence Handle9927587

    CAS  PubMed  Google Scholar 

  58. L Van Valen RE Sloan (1965) ArticleTitleThe earliest primates. Science 150 743–745 Occurrence Handle1:STN:280:CCmD2c3is1U%3D Occurrence Handle5891702

    CAS  PubMed  Google Scholar 

  59. G Vermeij (1996) ArticleTitleAnimal origins. Science 274 525–526 Occurrence Handle10.1126/science.274.5287.525 Occurrence Handle1:CAS:528:DyaK28XmsVWls74%3D

    Article  CAS  Google Scholar 

  60. GA Wray JS Levigton LH Shapiro (1996) ArticleTitleMolecular evidence for deep Precambrian divergences among metazoan phyla. Science 274 568–573 Occurrence Handle10.1126/science.274.5287.568 Occurrence Handle1:CAS:528:DyaK28XmsVWltLo%3D

    Article  CAS  Google Scholar 

  61. C-I Wu (2001) ArticleTitleThe genie view of the process of speciation. J Evol Biol 14 851–865 Occurrence Handle10.1046/j.1420-9101.2001.00335.x

    Article  Google Scholar 

  62. C-I Wu W-H Li (1985) ArticleTitleEvidence for higher rates of nucleotide substitutions in rodents than in man. Proc Natl Acad Sci USA 82 1741–1745 Occurrence Handle1:CAS:528:DyaL2MXhvVSisro%3D Occurrence Handle3856856

    CAS  PubMed  Google Scholar 

  63. Z Yang R Nielsen (1998) ArticleTitleSynonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol 46 409–418 Occurrence Handle1:CAS:528:DyaK1cXitlSgu7w%3D Occurrence Handle9541535

    CAS  PubMed  Google Scholar 

  64. Y Zhong Q Zhao SH Shi YL Huang M Hasegawa (2002) ArticleTitleDetecting evolutionary rate heterogeneity among mangroves and their close terrestrial relatives. Ecol Lett 5 427–432 Occurrence Handle10.1046/j.1461-0248.2002.00336.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindell Bromham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bromham, L. Molecular Clocks and Explosive Radiations . J Mol Evol 57 (Suppl 1), S13–S20 (2003). https://doi.org/10.1007/s00239-003-0002-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-0002-7

Keywords

Navigation