Skip to main content

Advertisement

Log in

The effect of targeted muscle reinnervation on post-amputation pain and functional outcomes: a systematic review and meta-analysis

  • Review
  • Published:
European Journal of Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Targeted muscle reinnervation (TMR) has been shown to reduce phantom limb pain (PLP) and residual limb pain (RLP) in amputee patients, improving the quality of life. This systematic review aimed to evaluate the quality of data and determine the efficacy of TMR on pain reduction and functional outcomes in amputees.

Methods

The protocol was registered and published a priori on PROSPERO (CRD42021285083). Medline, Embase, CENTRAL, Science Citation Index, and PsycINFO databases were searched until June 2022, retrieving 10 studies (n = 943). Selected outcomes were pain scores, improvement in limb function, complication rates, pain medication, and resubmission rates.

Results

Ten studies (1 RCT and 9 observational studies) were included (n = 1099 limbs). The mean follow-up was 17.9 months (range 9.6–24.0). For NRS, the pooled mean difference was − 2.68 (95% CI: − 3.21, − 2.14; p < 0.0001) for RLP and − 2.17 (95% CI: − 2.70, − 1.63; p < 0.0001) for PLP, in favor of the TMR group, respectively. Pooled mean differences were significantly lower for all domains (all p < 0.0001) of the PROMIS score, in favor of the TMR group. Complication rates ranged from 0 to 16%. All studies showed a reduction in PLP and RLP following TMR. Three studies, assessing functional outcomes, showed an increase following TMR. The RCT was graded high quality and observational studies were moderate to very low quality.

Conclusions

Despite varying study quality, pooled analysis shows a significant reduction in RLP and PLP across all PROMIS domains and significant reduction in NRS scores in the TMR group. Additionally, TMR demonstrated improved functional outcomes for amputees.

Systematic review registration.

PROSPERO CRD42021285083.

Level of evidence: Not gradable

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McDonald CL, Westcott-McCoy S, Weaver MR, Haagsma J, Kartin D (2021) Global prevalence of traumatic non-fatal limb amputation. Prosthet Orthot Int 45(2):105–114

    PubMed  Google Scholar 

  2. O’Brien AL, Jordan SW, West JM, Mioton LM, Dumanian GA, Valerio IL (2021) Targeted muscle reinnervation at the time of upper-extremity amputation for the treatment of pain severity and symptoms. J Hand Surg 46(1):72.e71-72.e10

    Google Scholar 

  3. Hill A (1999) Phantom limb pain: a review of the literature on attributes and potential mechanisms. J Pain Symptom Manage 17(2):125–142

    CAS  PubMed  Google Scholar 

  4. Pierce RO Jr, Kernek CB, Ambrose TA 2nd (1993) The plight of the traumatic amputee. Orthopedics 16(7):793–797

    PubMed  Google Scholar 

  5. Jensen TS, Krebs B, Nielsen J, Rasmussen P (1983) Phantom limb, phantom pain and stump pain in amputees during the first 6 months following limb amputation. Pain 17(3):243–256

    PubMed  Google Scholar 

  6. Jensen TS, Krebs B, Nielsen J, Rasmussen P (1985) Immediate and long-term phantom limb pain in amputees: incidence, clinical characteristics and relationship to pre-amputation limb pain. Pain 21(3):267–278

    PubMed  Google Scholar 

  7. Bowen JB, Ruter D, Wee C, West J, Valerio IL (2019) Targeted muscle reinnervation technique in below-knee amputation. Plast Reconstr Surg 143(1):309–312

    CAS  PubMed  Google Scholar 

  8. Lu C, Sun X, Wang C, Wang Y, Peng J (2018) Mechanisms and treatment of painful neuromas. Rev Neurosci 29(5):557–566

    CAS  PubMed  Google Scholar 

  9. Foltán R, Klíma K, Špačková J, Šedý J (2008) Mechanism of traumatic neuroma development. Med Hypotheses 71(4):572–576

    PubMed  Google Scholar 

  10. Herndon JH, Eaton RG, Littler JW (1976) Management of painful neuromas in the hand. J Bone Joint Surg Am 58(3):369–373

    CAS  PubMed  Google Scholar 

  11. Desmoulière A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146(1):56–66

    PubMed  PubMed Central  Google Scholar 

  12. Kozak LJ, Owings MF (1998) Ambulatory and inpatient procedures in the United States, 1995. Vital Health Stat 13(135):1–116

    Google Scholar 

  13. van der Schans CP, Geertzen JHB, Schoppen T, Dijkstra PU (2002) Phantom pain and health-related quality of life in lower limb amputees. J Pain Symptom Manage 24(4):429–436

    PubMed  Google Scholar 

  14. Jain SA, Nydick J, Leversedge F, Power D, Styron J, Safa B, Buncke G (2021) Clinical outcomes of symptomatic neuroma resection and reconstruction with processed nerve allograft. PlastReconstr Surg – Global Open 9(10)

  15. Bates TJ, Fergason JR, Pierrie SN (2020) Technological advances in prosthesis design and rehabilitation following upper extremity limb loss. Curr Rev Musculoskelet Med 13(4):485–493

    PubMed  PubMed Central  Google Scholar 

  16. O’Brien AL, Jordan SW, West JM, Mioton LM, Dumanian GA, Valerio IL (2021) Targeted muscle reinnervation at the time of upper-extremity amputation for the treatment of pain severity and symptoms. J Hand Surg Am 46(1):72.e71-72.e10

    Google Scholar 

  17. Hijjawi JB, Kuiken TA, Lipschutz RD, Miller LA, Stubblefield KA, Dumanian GA (2006) Improved myoelectric prosthesis control accomplished using multiple nerve transfers. Plast Reconstr Surg 118(7):1573–1578

    CAS  PubMed  Google Scholar 

  18. Alexander JH, Jordan SW, West JM, Compston A, Fugitt J, Bowen JB, Dumanian GA, Pollock R, Mayerson JL, Scharschmidt TJ et al (2019) Targeted muscle reinnervation in oncologic amputees: early experience of a novel institutional protocol. J Surg Oncol 120(3):348–358

    PubMed  PubMed Central  Google Scholar 

  19. Dumanian GA, Potter BK, Mioton LM, Ko JH, Cheesborough JE, Souza JM, Ertl WJ, Tintle SM, Nanos GP, Valerio IL et al (2019) Targeted muscle reinnervation treats neuroma and phantom pain in major limb amputees: a randomized clinical trial. Ann Surg 270(2):238–246

    PubMed  Google Scholar 

  20. Valerio IL, Dumanian GA, Jordan SW, Mioton LM, Bowen JB, West JM, Porter K, Ko JH, Souza JM, Potter BK (2019) Preemptive treatment of phantom and residual limb pain with targeted muscle reinnervation at the time of major limb amputation. J Am Coll Surg 228(3):217–226

    PubMed  Google Scholar 

  21. Chang BL, Mondshine J, Attinger CE, Kleiber GM (2021) Targeted muscle reinnervation improves pain and ambulation outcomes in highly comorbid amputees. Plast Reconstr Surg 148(2):376–386

    CAS  PubMed  Google Scholar 

  22. Mioton LM, Dumanian GA, Shah N, Qiu CS, Ertl WJ, Potter BK, Souza JM, Valerio IL, Ko JH, Jordan SW (2020) Targeted muscle reinnervation improves residual limb pain, phantom limb pain, and limb function: a prospective study of 33 major limb amputees. Clin Orthop Relat Res 478(9):2161–2167

    PubMed  PubMed Central  Google Scholar 

  23. O’Brien AL, Jordan SW, West JM, Mioton LM, Dumanian GA, Valerio IL (2021) Targeted muscle reinnervation at the time of upper-extremity amputation for the treatment of pain severity and symptoms. J Hand Surg Am 46(1):72 e71-72 e10

    Google Scholar 

  24. Hoyt BW, Gibson JA, Potter BK, Souza JM (2021) Practice patterns and pain outcomes for targeted muscle reinnervation: an informed approach to targeted muscle reinnervation use in the acute amputation setting. J Bone Joint Surg Am 103(8):681–687

    PubMed  Google Scholar 

  25. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71

    PubMed  PubMed Central  Google Scholar 

  26. Cella D, Lai JS, Nowinski CJ, Victorson D, Peterman A, Miller D, Bethoux F, Heinemann A, Rubin S, Cavazos JE et al (2012) Neuro-QOL: brief measures of health-related quality of life for clinical research in neurology. Neurology 78(23):1860–1867

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pan AW, Fisher AG (1994) The assessment of motor and process skills of persons with psychiatric disorders. Am J Occup Ther 48(9):775–780

    CAS  PubMed  Google Scholar 

  28. Campbell WI, Lewis S (1990) Visual analogue measurement of pain. Ulster Med J 59(2):149–154

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Price DD, Bush FM, Long S, Harkins SW (1994) A comparison of pain measurement characteristics of mechanical visual analogue and simple numerical rating scales. Pain 56(2):217–226

    PubMed  Google Scholar 

  30. Cella D, Riley W, Stone A, Rothrock N, Reeve B, Yount S, Amtmann D, Bode R, Buysse D, Choi S et al (2010) The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. J Clin Epidemiol 63(11):1179–1194

    PubMed  PubMed Central  Google Scholar 

  31. Hays RD, Bjorner JB, Revicki DA, Spritzer KL, Cella D (2009) Development of physical and mental health summary scores from the patient-reported outcomes measurement information system (PROMIS) global items. Qual Life Res 18(7):873–880

    PubMed  PubMed Central  Google Scholar 

  32. Frantz TL, Everhart JS, West JM, Ly TV, Phieffer LS, Valerio IL (2020) Targeted muscle reinnervation at the time of major limb amputation in traumatic amputees: early experience of an effective treatment strategy to improve pain. JB JS Open Access 5(2):e0067

    PubMed  PubMed Central  Google Scholar 

  33. Wimalawansa SM, Lygrisse D, Anderson SR, Eberlin KR, Westenberg R, Schulz S, West J, Valerio IL (2021) Targeted muscle reinnervation in partial hand amputations. Plast Reconstr Surg Glob Open 9(5):e3542

    PubMed  PubMed Central  Google Scholar 

  34. O’Brien AL, West JM, Gokun Y, Janse S, Schulz SA, Valerio IL, Moore AM (2022) Longitudinal durability of patient-reported pain outcomes after targeted muscle reinnervation at the time of major limb amputation. J Am Coll Surg 234(5):883–889

    PubMed  Google Scholar 

  35. Agnew SP, Schultz AE, Dumanian GA, Kuiken TA (2012) Targeted reinnervation in the transfemoral amputee: a preliminary study of surgical technique. Plast Reconstr Surg 129(1):187–194

    CAS  PubMed  Google Scholar 

  36. Gart MS, Souza JM, Dumanian GA (2015) Targeted muscle reinnervation in the upper extremity amputee: a technical roadmap. J Hand Surg Am 40(9):1877–1888

    PubMed  Google Scholar 

  37. Morgan EN, Kyle Potter B, Souza JM, Tintle SM, Nanos GP 3rd (2016) Targeted muscle reinnervation for transradial amputation: description of operative technique. Tech Hand Up Extrem Surg 20(4):166–171

    PubMed  Google Scholar 

  38. Fracol ME, Janes LE, Ko JH, Dumanian GA (2018) Targeted muscle reinnervation in the lower leg: an anatomical study. Plast Reconstr Surg 142(4):541e–550e

    CAS  PubMed  Google Scholar 

  39. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14(1):135

    PubMed  PubMed Central  Google Scholar 

  40. Subedi B, Grossberg GT (2011) Phantom limb pain: mechanisms and treatment approaches. Pain Res Treat 2011:864605

    PubMed  PubMed Central  Google Scholar 

  41. Collins KL, Russell HG, Schumacher PJ, Robinson-Freeman KE, O’Conor EC, Gibney KD, Yambem O, Dykes RW, Waters RS, Tsao JW (2018) A review of current theories and treatments for phantom limb pain. J Clin Invest 128(6):2168–2176

    PubMed  PubMed Central  Google Scholar 

  42. Vaso A, Adahan HM, Gjika A, Zahaj S, Zhurda T, Vyshka G, Devor M (2014) Peripheral nervous system origin of phantom limb pain. Pain 155(7):1384–1391

    PubMed  Google Scholar 

  43. Preissler S, Feiler J, Dietrich C, Hofmann GO, Miltner WH, Weiss T (2013) Gray matter changes following limb amputation with high and low intensities of phantom limb pain. Cereb Cortex 23(5):1038–1048

    PubMed  Google Scholar 

  44. Montoya P, Ritter K, Huse E, Larbig W, Braun C, Töpfner S, Lutzenberger W, Grodd W, Flor H, Birbaumer N (1998) The cortical somatotopic map and phantom phenomena in subjects with congenital limb atrophy and traumatic amputees with phantom limb pain. Eur J Neurosci 10(3):1095–1102

    CAS  PubMed  Google Scholar 

  45. Flor H, Nikolajsen L, Staehelin Jensen T (2006) Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci 7(11):873–881

    CAS  PubMed  Google Scholar 

  46. Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, Larbig W, Taub E (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375(6531):482–484

    CAS  PubMed  Google Scholar 

  47. Cheesborough JE, Smith LH, Kuiken TA, Dumanian GA (2015) Targeted muscle reinnervation and advanced prosthetic arms. Semin Plast Surg 29(1):62–72

    PubMed  PubMed Central  Google Scholar 

  48. Wood VE, Mudge MK (1987) Treatment of neuromas about a major amputation stump. J Hand Surg Am 12(2):302–306

    CAS  PubMed  Google Scholar 

  49. Mobbs RJ, Vonau M, Blum P (2003) Treatment of painful peripheral neuroma by vein implantation. J Clin Neurosci 10(3):338–339

    CAS  PubMed  Google Scholar 

  50. Harris AJ (1999) Cortical origin of pathological pain. The Lancet 354(9188):1464–1466

    CAS  Google Scholar 

  51. Bowen J, Wee C, Kalik J, Valerio I (2017) Targeted muscle reinnervation to improve pain, prosthetic tolerance, and bioprosthetic outcomes in the amputee. Adv Wound Care 6:261–267

    Google Scholar 

  52. Schultz AE, Kuiken TA (2011) Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities. PM R 3(1):55–67

    PubMed  Google Scholar 

  53. Urbanchek MG, Kung TA, Frost CM, Martin DC, Larkin LM, Wollstein A, Cederna PS (2016) Development of a regenerative peripheral nerve interface for control of a neuroprosthetic limb. Biomed Res Int 2016:5726730

    PubMed  PubMed Central  Google Scholar 

  54. Eberlin KR, Ducic I (2018) Surgical algorithm for neuroma management: a changing treatment paradigm. Plast Reconstr Surg Glob Open 6(10):e1952

    PubMed  PubMed Central  Google Scholar 

  55. Kubiak CA, Kemp SWP, Cederna PS (2018) Regenerative peripheral nerve interface for management of postamputation neuroma. JAMA Surg 153(7):681–682

    PubMed  Google Scholar 

  56. Kung TA, Bueno RA, Alkhalefah GK, Langhals NB, Urbanchek MG, Cederna PS (2013) Innovations in prosthetic interfaces for the upper extremity. Plast Reconstr Surg 132(6):1515–1523

    CAS  PubMed  Google Scholar 

  57. Valerio I, Schulz SA, West J, Westenberg RF, Eberlin KR (2020) Targeted muscle reinnervation combined with a vascularized pedicled regenerative peripheral nerve interface. Plast Reconstr Surg Glob Open 8(3):e2689

  58. Felder JM, Pripotnev S, Ducic I, Skladman R, Ha AY, Pet MA (2022) Failed targeted muscle reinnervation: findings at revision surgery and concepts for success. Plast Reconstr Surg Glob Open 10(4):e4229

    PubMed  PubMed Central  Google Scholar 

  59. Peters BR, Russo SA, West JM, Moore AM, Schulz SA (2020) Targeted muscle reinnervation for the management of pain in the setting of major limb amputation. SAGE Open Med 8:2050312120959180–2050312120959180

    PubMed  PubMed Central  Google Scholar 

  60. Lenroot RK, Giedd JN (2006) Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 30(6):718–729

    PubMed  Google Scholar 

  61. Pires GR, Moss WD, Ormiston LD, Baschuk CM, Mendenhall SD (2021) Targeted muscle reinnervation in children: a case report and brief overview of the literature. Plast Reconstr Surg Glob Open 9(12):e3986

    PubMed  PubMed Central  Google Scholar 

  62. Baron JE, Parker EA, Wolf BR, Duchman KR, Westermann RW (2021) PROMIS versus legacy patient-reported outcome measures for sports medicine patients undergoing arthroscopic knee, shoulder, and hip interventions: a systematic review. Iowa Orthop J 41(2):58–71

    PubMed  PubMed Central  Google Scholar 

  63. Brodke DJ, Zhang C, Shaw JD, Cizik AM, Saltzman CL, Brodke DS (2022) How do PROMIS scores correspond to common physical abilities? Clin Orthop Relat Res 480(5):996–1007

    PubMed  Google Scholar 

  64. Huffman A, Schneeberger S, Goodyear E, West JM, O’Brien AL, Scharschmidt TJ, Mayerson JL, Schulz SA, Moore AM (2022) Evaluating hip disarticulation outcomes in a 51-patient series. J Orthop 31:117–120

    PubMed  PubMed Central  Google Scholar 

  65. Junn A, Dinis J, Reategui A, Liu S, Colen DL, Prsic A (2022) Expanding the criteria for targeted muscle reinnervation: a national assessment of eligibility. Orthoplastic Surg 7:7–12

    Google Scholar 

  66. Daugherty THF, Parikh R, Mailey BA, Felder JM, Bueno RA Jr (2020) Surgical technique for below-knee amputation with concurrent targeted muscle reinnervation. Plast Reconstr Surg Glob Open 8(7):e2990

    PubMed  PubMed Central  Google Scholar 

  67. Anderson SR, Wimalawansa SM, Lans J, Eberlin KR, Valerio IL (2022) Targeted muscle reinnervation of the brachial plexus region: a cadaveric study and case series. Orthoplastic Surg 9:116–121

    Google Scholar 

  68. Bowen JB, Wee CE, Kalik J, Valerio IL (2017) Targeted muscle reinnervation to improve pain, prosthetic tolerance, and bioprosthetic outcomes in the amputee. Adv Wound Care (New Rochelle) 6(8):261–267

    PubMed  Google Scholar 

  69. Davidge KM, Ebersole GC, Mackinnon SE (2019) Pain and function following revision cubital tunnel surgery. Hand (N Y) 14(2):172–178

    PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the idea and design of this review, drafting the article, and revising it critically. They are all in approval of the version submitted and agree to be accountable for all aspects of the work if questions arise related to its accuracy or integrity.

Corresponding author

Correspondence to Jun-Li Tham.

Ethics declarations

Ethics statement

Ethics approval not required.

Conflict of interest

Jun-Li Tham, Avnish Sood, Tiam Mana Saffari, and Ankur Khajuria declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tham, JL., Sood, A., Saffari, T.M. et al. The effect of targeted muscle reinnervation on post-amputation pain and functional outcomes: a systematic review and meta-analysis. Eur J Plast Surg 46, 475–497 (2023). https://doi.org/10.1007/s00238-022-02021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00238-022-02021-5

Keywords

Navigation