Skip to main content

Advertisement

Log in

Pectus excavatum camouflage: a new technique using a tissue engineered scaffold

  • Ideas and Innovations
  • Published:
European Journal of Plastic Surgery Aims and scope Submit manuscript

Abstract

Pectus excavatum is the most common congenital chest wall deformity. Customised silicone implants have been used to camouflage this deformity with good short-term outcomes. In the long term, permanent implants have a significant risk of capsular contracture, migration and extrusion. Scaffold-guided tissue engineering provides an alternative autologous solution which avoids issues associated with permanent implants. We implanted a 3D-printed, custom-made, biodegradable and highly porous scaffold filled with autologous fat graft. We were able to sustain autologous fat in the construct. There was an excellent aesthetic outcome and the highly porous polycaprolactone implant was well tolerated by the patient. This case illustrates the first-in-human trial of soft tissue engineering to camouflage a pectus excavatum defect not reconstructable by conventional techniques.

Level of evidence: Level V, therapeutic study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

There is availability of the data and material for this case study.

References

  1. Shamberger RC (1996) “Congenital chest wall deformities”, (in eng). Curr Probl Surg 33(6):469–542. https://doi.org/10.1016/s0011-3840(96)80005-0

    Article  CAS  PubMed  Google Scholar 

  2. Buziashvili D, Gopman JM, Weissler H, Bodenstein L, Kaufman AJ, Taub PJ (2019) An evidence-based approach to management of pectus excavatum and carinatum. Ann Plast Surg 82(3):352–358. https://doi.org/10.1097/sap.0000000000001654

    Article  CAS  PubMed  Google Scholar 

  3. Obermeyer RJ, Cohen NS, Jaroszewski DE (2018) “The physiologic impact of pectus excavatum repair”, (in eng). Semin Pediatr Surg 27(3):127–132. https://doi.org/10.1053/j.sempedsurg.2018.05.005

    Article  PubMed  Google Scholar 

  4. Kelly RE Jr (2008) “Pectus excavatum: historical background, clinical picture, preoperative evaluation and criteria for operation”, (in eng). Semin Pediatr Surg 17(3):181–193. https://doi.org/10.1053/j.sempedsurg.2008.03.002

    Article  PubMed  Google Scholar 

  5. Koumbourlis AC (2009) “Pectus excavatum: pathophysiology and clinical characteristics”, (in eng). Paediatr Respir Rev 10(1):3–6. https://doi.org/10.1016/j.prrv.2008.12.002

    Article  PubMed  Google Scholar 

  6. Chavoin JP et al (2016) Correction of pectus excavatum by custom-made silicone implants: contribution of computer-aided design reconstruction. A 20-year experience and 401 cases,” (in eng). Plast Reconstr Surg 137(5):860e–71e. https://doi.org/10.1097/prs.0000000000002071

    Article  CAS  PubMed  Google Scholar 

  7. Kelly RE Jr et al (2008) “Surgical repair of pectus excavatum markedly improves body image and perceived ability for physical activity: multicenter study”, (in eng). Pediatrics 122(6):1218–1222. https://doi.org/10.1542/peds.2007-2723

    Article  PubMed  Google Scholar 

  8. Deva AK, Cuss A, Magnusson M, Cooter R (2019) The “game of implants”: a perspective on the crisis-prone history of breast implants,” (in eng). Aesthet Surg J 39(Suppl_1):S55-s65. https://doi.org/10.1093/asj/sjy310

    Article  PubMed  Google Scholar 

  9. Ariani N et al (2013) ”Current state of craniofacial prosthetic rehabilitation,” (in eng). Int J Prosthodont 26(1):57–67. https://doi.org/10.11607/ijp.3220

    Article  PubMed  Google Scholar 

  10. Wagner RD, Braun TL, Zhu H, Winocour S (2019) “A systematic review of complications in prepectoral breast reconstruction”, (in eng). J Plast Reconstr Aesthet Surg 72(7):1051–1059. https://doi.org/10.1016/j.bjps.2019.04.005

    Article  PubMed  Google Scholar 

  11. Pool SMW, Wolthuizen R, Mouës-Vink CM (2018) “Silicone breast prostheses: a cohort study of complaints, complications, and explantations between 2003 and 2015”, (in eng). J Plast Reconstr Aesthet Surg 71(11):1563–1569. https://doi.org/10.1016/j.bjps.2018.07.010

    Article  PubMed  Google Scholar 

  12. Leberfinger AN et al (2017) “Breast implant-associated anaplastic large cell lymphoma: a systematic review”, (in eng). JAMA Surg 152(12):1161–1168. https://doi.org/10.1001/jamasurg.2017.4026

    Article  PubMed  Google Scholar 

  13. Loch-Wilkinson A et al (2017) “Breast implant-associated anaplastic large cell lymphoma in Australia and New Zealand: high-surface-area textured implants are associated with increased risk”, (in eng). Plast Reconstr Surg 140(4):645–654. https://doi.org/10.1097/prs.0000000000003654

    Article  CAS  PubMed  Google Scholar 

  14. Rocha FP, Pires JA, Torres VF, Fagundes DJ (2012) “Treatment of bilateral mammary ptosis and pectus excavatum through the same incision in one surgical stage”, (in eng). Sao Paulo Med J 130(3):198–201. https://doi.org/10.1590/s1516-31802012000300010

    Article  PubMed  Google Scholar 

  15. Grappolini S, Fanzio PM, D’Addetta PG, Todde A, Infante M (2008) “Aesthetic treatment of pectus excavatum: a new endoscopic technique using a porous polyethylene implant”, (in eng). Aesthetic Plast Surg 32(1):105–110. https://doi.org/10.1007/s00266-007-9025-6

    Article  PubMed  Google Scholar 

  16. Loch-Wilkinson A et al (2020) Breast implant-associated anaplastic large cell lymphoma in Australia: a longitudinal study of implant and other related risk factors. Aesthet Surg J 40(8):838–846. https://doi.org/10.1093/asj/sjz333

    Article  PubMed  Google Scholar 

  17. Rubin JP, Yaremchuk MJ (1997) “Complications and toxicities of implantable biomaterials used in facial reconstructive and aesthetic surgery: a comprehensive review of the literature”, (in eng). Plast Reconstr Surg 100(5):1336–1353. https://doi.org/10.1097/00006534-199710000-00043

    Article  CAS  PubMed  Google Scholar 

  18. Lin CW, Liao SL (2017) “Long-term complications of different porous orbital implants: a 21-year review”, (in eng). Br J Ophthalmol 101(5):681–685. https://doi.org/10.1136/bjophthalmol-2016-308932

    Article  PubMed  Google Scholar 

  19. Ho Quoc C, Delaporte T, Meruta A, La Marca S, Toussoun G, Delay E (2013) ”Breast asymmetry and pectus excavatum improvement with fat grafting in eng,” (in eng). Aesthet Surg J 33(6):822–9. https://doi.org/10.1177/1090820x13493907

    Article  PubMed  Google Scholar 

  20. Groen JW et al (2016) “Autologous fat grafting in onco-plastic breast reconstruction: a systematic review on oncological and radiological safety, complications, volume retention and patient/surgeon satisfaction”, (in eng). J Plast Reconstr Aesthet Surg 69(6):742–764. https://doi.org/10.1016/j.bjps.2016.03.019

    Article  CAS  PubMed  Google Scholar 

  21. Kobbe P, Laubach M, Hutmacher DW, Alabdulrahman H, Sellei RM, Hildebrand F (2020) ”Convergence of scaffold-guided bone regeneration and RIA bone grafting for the treatment of a critical-sized bone defect of the femoral shaft,”(in eng). Eur J Med Res 25(1):70. https://doi.org/10.1186/s40001-020-00471-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Les AS et al (2019) “3D-printed, externally-implanted, bioresorbable airway splints for severe tracheobronchomalacia”, (in eng). Laryngoscope 129(8):1763–1771. https://doi.org/10.1002/lary.27863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Probst FA, Hutmacher DW, Müller DF, Machens HG, Schantz JT (2010) “[Calvarial reconstruction by customized bioactive implant]”, (in ger). Handchir Mikrochir Plast Chir 42(6):369–373. https://doi.org/10.1055/s-0030-1248310.RekonstruktionderKalvariadurcheinpräfabriziertesbioaktivesImplantat

    Article  CAS  PubMed  Google Scholar 

  24. Seen S, Young S, Lang SS, Lim TC, Amrith S, Sundar G (2021) “Orbital implants in orbital fracture reconstruction: a ten-year series”, (in eng). Craniomaxillofac Trauma Reconstr 14(1):56–63. https://doi.org/10.1177/1943387520939032

    Article  PubMed  Google Scholar 

  25. Seen S et al (2018) “Permanent versus bioresorbable implants in orbital floor blowout fractures”, (in eng). Ophthalmic Plast Reconstr Surg 34(6):536–543. https://doi.org/10.1097/iop.0000000000001077

    Article  PubMed  Google Scholar 

  26. Sood V, Green GE, Les A, Ohye RG (2021) “Advanced therapies for severe tracheobronchomalacia: a review of the use of 3D-printed, patient-specific, externally implanted, bioresorbable airway splints”, (in eng). Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 24:37–43. https://doi.org/10.1053/j.pcsu.2021.02.001

    Article  PubMed  Google Scholar 

  27. Vikingsson L, Gómez-Tejedor JA, Gallego Ferrer G, Gómez Ribelles JL (2015) ”An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage,”(in eng). J Biomech 48(7):1310–7. https://doi.org/10.1016/j.jbiomech.2015.02.013

    Article  CAS  PubMed  Google Scholar 

  28. Coleman SR (1997) “Facial recontouring with lipostructure”, (in eng). Clin Plast Surg 24(2):347–367

    Article  CAS  Google Scholar 

  29. Woodruff MA, Hutmacher DW (2010) ”The return of a forgotten polymer-polycaprolactone in the 21st century,”. Progress in Polymer Science 35(10):1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002

    Article  CAS  Google Scholar 

  30. Y. Yuan, S. Zhang, J. Gao, and F. Lu 2015 “Spatial structural integrity is important for adipose regeneration after transplantation,” (in Eng), Archives of dermatological research, https://doi.org/10.1007/s00403-015-1574-y.

  31. Chhaya MP, Balmayor ER, Hutmacher DW, Schantz JT (2016) Transformation of breast reconstruction via additive biomanufacturing. Sci Rep 6:28030. https://doi.org/10.1038/srep28030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng M et al (2021) A preclinical animal model for the study of scaffold-guided breast tissue engineering. Tissue Eng Part C Methods 27(6):366–377. https://doi.org/10.1089/ten.TEC.2020.0387

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mohit P. Chhaya, PhD, and Sara Lucarotti, M.E. (BellaSeno GmbH) for designing and manufacturing the pectus excavatum scaffold.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this work as defined by the International Committee of Medical Journal Editors.

Corresponding author

Correspondence to Dietmar W. Hutmacher.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This case was reviewed by our institution’s clinical ethics committee where it was agreed that offering the patient an experimental treatment was acceptable (Approval number: HREC/2021/QMS/69789).

Patient consent

The patient gave written consent regarding publishing her data and photographs.

Competing interests

Dietmar W. Hutmacher is a founder and shareholder of BellaSeno GmbH. Matthew E. Cheng, Jan Janzekovic, Harrison J. Theile, Caitlin Rutherford Heard, Marie Luise Wille, Chris Cole, Thomas B. Lloyd, Richard J. W. Theile and Michael Wagels declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 625 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M.E., Janzekovic, J., Theile, H.J. et al. Pectus excavatum camouflage: a new technique using a tissue engineered scaffold. Eur J Plast Surg 45, 177–182 (2022). https://doi.org/10.1007/s00238-021-01902-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00238-021-01902-5

Keywords

Navigation