Skip to main content
Log in

New families of Laplacian borderenergetic graphs

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

Laplacian matrix and its spectrum are commonly used for giving a measure in networks in order to analyse its topological properties. In this paper, Laplacian matrix of graphs and their spectrum are studied. Laplacian energy of a graph G of order n is defined as \( \mathrm{{LE}}(G) = \sum _{i=1}^n|\lambda _i(L)-{\bar{d}}|\), where \(\lambda _i(L)\) is the i-th eigenvalue of Laplacian matrix of G, and \({\bar{d}}\) is their average. If \(\mathrm{{LE}}(G) = \mathrm{{LE}}(K_n)\) for the complete graph \(K_n\) of order n, then G is known as L-borderenergetic graph. In the first part of this paper, we construct three infinite families of non-complete disconnected L-borderenergetic graphs: \(\Lambda _1 = \{ G_{b,j,k} = [(((j-2)k-2j+2)b+1)K_{(j-1)k-(j-2)}] \cup b(K_j \times K_k)| b,j,k \in {{\mathbb {Z}}}^+\}\), \( \Lambda _2 = \{G_{2,b} = [K_6 \nabla b(K_2 \times K_3)] \cup (4b-2)K_9 | b\in {{\mathbb {Z}}}^+ \}\), \( \Lambda _3 = \{G_{3,b} = [bK_8 \nabla b(K_2 \times K_4)] \cup (14b-4)K_{8b+6} | b\in {{\mathbb {Z}}}^+ \}\), where \(\nabla \) is join operator and \(\times \) is direct product operator on graphs. Then, in the second part of this work, we construct new infinite families of non-complete connected L-borderenergetic graphs \(\Omega _1= \{K_2 \nabla \overline{aK_2^r} \vert a\in {{\mathbb {Z}}}^+\}\), \(\Omega _2 = \{\overline{aK_3 \cup 2(K_2\times K_3)}\vert a\in {{\mathbb {Z}}}^+ \}\) and \(\Omega _3 = \{\overline{aK_5 \cup (K_3\times K_3)}\vert a\in {{\mathbb {Z}}}^+ \}\), where \({\overline{G}}\) is the complement operator on G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gutman, I.: The energy of a graph: old and new results. In: Betten, A., Kohnert, A., Laue, R., Wassermann, A. (eds.) Algebraic combinatorics and applications, pp. 196–211. Springer, Berlin, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Li, X., Shi, Y., Gutman, I.: The chemical connection. Graph Energy (2012). https://doi.org/10.1007/978-1-4614-4220-2_2

    Article  Google Scholar 

  3. Nikiforov, V.: The energy of graphs and matrices. J. Math. Anal. Appl. 326(2), 1472–1475 (2007)

    Article  MathSciNet  Google Scholar 

  4. Das, K.C., Mojallal, S.A.: On Laplacian energy of graphs. Discret. Math. 325, 52–64 (2014)

    Article  MathSciNet  Google Scholar 

  5. Das, K.C., Mojallal, S.A., Gutman, I.: On Laplacian energy in terms of graph invariants. Appl. Math. Comput. 268, 83–92 (2015)

    MathSciNet  Google Scholar 

  6. Ganie, H.A., Pirzada, S., Iványi, A.: Energy, Laplacian energy of double graphs and new families of equienergetic graphs. Acta Universitatis Sapientiae, Informatica 6(1), 89–116 (2014)

    Article  Google Scholar 

  7. Pirzada, S., Ganie, H.A.: On the Laplacian eigenvalues of a graph and Laplacian energy. Linear Algebra Appl. 486, 454–468 (2015)

    Article  MathSciNet  Google Scholar 

  8. Ganie, H.A., Pirzada, S., Baskoro, E.T.: On energy, Laplacian energy and \( p \)-fold graphs. Electron. J. Graph Theory Appl. 3(1), 94–107 (2015)

    Article  MathSciNet  Google Scholar 

  9. Ramane, H.S., Gudodagi, G.A., Gutman, I.: Laplacian energy of union and cartesian product and Laplacian equienergetic graphs. Kragujevac J. Math. 39(2), 193–205 (2015)

    Article  MathSciNet  Google Scholar 

  10. Ganie, H.A., Pirzada, S.: On the bounds for signless Laplacian energy of a graph. Discret. Appl. Math. 228, 3–13 (2017)

    Article  MathSciNet  Google Scholar 

  11. Ganie, H.A., Chat, B.A., Pirzada, S.: Signless Laplacian energy of a graph and energy of a line graph. Linear Algebra Appl. 544, 306–324 (2018)

    Article  MathSciNet  Google Scholar 

  12. Das, K.C., Aouchiche, M., Hansen, P.: On (distance) Laplacian energy and (distance) signless Laplacian energy of graphs. Discret. Appl. Math. 243, 172–185 (2018)

    Article  MathSciNet  Google Scholar 

  13. Das, K.C., Alazemi, A., Andelic, M.: On energy and Laplacian energy of chain graphs. Discret. Appl. Math. 284, 391–400 (2020)

    Article  MathSciNet  Google Scholar 

  14. Yang, X., Wang, L.: Extremal Laplacian energy of directed trees, unicyclic digraphs and bicyclic digraphs. Appl. Math. Comput. 366, 124737 (2020)

    MathSciNet  Google Scholar 

  15. Mei, Y., Guo, C., Liu, M.: The bounds of the energy and Laplacian energy of chain graphs. AIMS Math. 6(5), 4847–4859 (2021)

    Article  MathSciNet  Google Scholar 

  16. Anchan, D.V., D’Souza, S., Gowtham, H., Bhat, P.G.: Laplacian energy of a graph with self-loops. Match 90(1), 247–258 (2023)

    Article  Google Scholar 

  17. Qi, X., Fuller, E., Wu, Q., Wu, Y., Zhang, C.-Q.: Laplacian centrality: a new centrality measure for weighted networks. Inform. Sci. 194, 240–253 (2012). https://doi.org/10.1016/j.ins.2011.12.027

    Article  MathSciNet  Google Scholar 

  18. Masuda, N., Porter, M.A., Lambiotte, R.: Random walks and diffusion on networks. Phys. Rep. 716–717, 1–58 (2017). https://doi.org/10.1016/j.physrep.2017.07.007

    Article  ADS  MathSciNet  Google Scholar 

  19. Hong, M.-D., Sun, W.-G., Liu, S.-Y., Xuan, T.-F.: Coherence analysis and Laplacian energy of recursive trees with controlled initial states. Front. Inform. Technol. Electron. Eng. 21(6), 931–938 (2020)

    Article  Google Scholar 

  20. Yu, W., Chen, G., Cao, M.: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica 46(6), 1089–1095 (2010). https://doi.org/10.1016/j.automatica.2010.03.006

    Article  MathSciNet  Google Scholar 

  21. Fernau, H., Rodríguez, J.A., Sigarreta, J.M.: Offensive r-alliances in graphs. Discret. Appl. Math. 157(1), 177–182 (2009)

    Article  MathSciNet  Google Scholar 

  22. Ouazine, K., Slimani, H., Tari, A.: Alliances in graphs: parameters, properties and applications-a survey. AKCE Int. J. Graphs Comb. 15(2), 115–154 (2018)

    Article  MathSciNet  Google Scholar 

  23. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008). https://doi.org/10.1016/j.physrep.2008.09.002

    Article  ADS  MathSciNet  Google Scholar 

  24. Atay, F.M., Biyikoglu, T., Jost, J.: Network synchronization: spectral versus statistical properties. Phys. D Nonlinear Phenom. 224(1), 35–41 (2006). https://doi.org/10.1016/j.physd.2006.09.018

    Article  ADS  MathSciNet  Google Scholar 

  25. Chen, J., Lu, J.-A., Zhan, C., Chen, G.: In: Thai, M.T., Pardalos, P.M. (eds.) Laplacian spectra and synchronization processes on complex networks, pp. 81–113. Springer, Boston, MA (2012). https://doi.org/10.1007/978-1-4614-0754-6_4

  26. Tuna, S.E.: Synchronization under matrix-weighted Laplacian. Automatica 73, 76–81 (2016). https://doi.org/10.1016/j.automatica.2016.06.012

    Article  MathSciNet  Google Scholar 

  27. Michelitsch, T., Riascos, A.P., Collet, B., Nowakowski, A., Nicolleau, F.: Fractional dynamics on networks and lattices. Wiley, London (2019). https://doi.org/10.1002/9781119608165.ch1

    Book  Google Scholar 

  28. Pushpalatha, M., Anusha, T., Rama Rao, T., Venkataraman, R.: L-rpl: Rpl powered by Laplacian energy for stable path selection during link failures in an Internet of Things network. Comput. Netw. 184, 107697 (2021). https://doi.org/10.1016/j.comnet.2020.107697

    Article  Google Scholar 

  29. Yang, C., Mao, J., Wei, P.: Air traffic network optimization via Laplacian energy maximization. Aerosp. Sci. Technol. 49, 26–33 (2016). https://doi.org/10.1016/j.ast.2015.11.004

    Article  Google Scholar 

  30. Huang, C., Deng, Y., Yang, X., Yang, X., Cao, J.: Can financial crisis be detected? Laplacian energy measure. Eur. J. Finance 29(9), 949–976 (2023)

    Article  Google Scholar 

  31. Gong, S., Li, X., Xu, G., Gutman, I., Furtula, B.: Borderenergetic graphs. MATCH Commun. Math. Comput. Chem 74(2), 321–332 (2015)

    MathSciNet  Google Scholar 

  32. Deng, B., Li, X., Gutman, I.: More on borderenergetic graphs. Linear Algebra Appl. 497, 199–208 (2016)

    Article  MathSciNet  Google Scholar 

  33. Ghorbani, M., Deng, B., Hakimi-Nezhaad, M., Li, X.: A survey on borderenergetic graphs. MATCH Commun. Math. Comput. Chem 84(2), 293–322 (2020)

    Google Scholar 

  34. Jacobs, D.P., Trevisan, V., Tura, F.: Eigenvalues and energy in threshold graphs. Linear Algebra Appl. 465, 412–425 (2015)

    Article  MathSciNet  Google Scholar 

  35. Vaidya, S.K., Popat, K.M.: Construction of sequences of borderenergetic graphs. Proyecciones (Antofagasta) 38(4), 837–847 (2019)

    Article  MathSciNet  Google Scholar 

  36. Tura, F.: L-borderenergetic graphs. MATCH Commun. Math. Comput. Chem 77, 37–44 (2017)

    MathSciNet  Google Scholar 

  37. Deng, B., Li, X.: More on L-borderenergetic graphs. MATCH Commun. Math. Comput. Chem 77(1), 115–127 (2017)

    MathSciNet  Google Scholar 

  38. Hakimi-Nezhaad, M., Ghorbani, M.: Laplacian borderenergetic graphs. J. Inf. Optim. Sci. 40(6), 1237–1264 (2019)

    MathSciNet  Google Scholar 

  39. Dede, C., Maden, A.D.: Bounds on the parameters of non-L-borderenergetic graphs. Ukrains’ kyi Matematychnyi Zhurnal 75(9), 1220–1236 (2023)

    Article  Google Scholar 

  40. Dede, C., Maden, A.D.: Garden of Laplacian borderenergetic graphs. MATCH Commun. Math. Comput. Chem 86(3), 597–610 (2021)

    Google Scholar 

  41. Lia, Q., Tanga, L.: Infinite numbers of infinite classes L-borderenergetic graphs. MATCH Commun. Math. Comput. Chem 90, 729–742 (2023)

    Article  Google Scholar 

  42. Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197, 143–176 (1994)

    Article  MathSciNet  Google Scholar 

  43. Barik, S., Bapat, R.B., Pati, S.: On the Laplacian spectra of product graphs. Appl. Anal. Discret. Math. 9(1), 39–58 (2015)

    Article  MathSciNet  Google Scholar 

  44. Anderson, W.N., Jr., Morley, T.D.: Eigenvalues of the Laplacian of a graph. Linear Multilinear Algebra 18(2), 141–145 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their valuable suggestions on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cahit Dede.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dede, C. New families of Laplacian borderenergetic graphs. Acta Informatica (2024). https://doi.org/10.1007/s00236-024-00454-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00236-024-00454-y

Mathematics Subject Classification

Navigation