Advertisement

Reactive synthesis with maximum realizability of linear temporal logic specifications

  • Rayna Dimitrova
  • Mahsa GhasemiEmail author
  • Ufuk Topcu
Original Article

Abstract

A challenging problem for autonomous systems is to synthesize a reactive controller that conforms to a set of given correctness properties. Linear temporal logic (LTL) provides a formal language to specify the desired behavioral properties of systems. In applications in which the specifications originate from various aspects of the system design, or consist of a large set of formulas, the overall system specification may be unrealizable. Driven by this fact, we develop an optimization variant of synthesis from LTL formulas, where the goal is to design a controller that satisfies a set of hard specifications and minimally violates a set of soft specifications. To that end, we introduce a value function that, by exploiting the LTL semantics, quantifies the level of violation of properties. Inspired by the idea of bounded synthesis, we fix a bound on the implementation size and search for an implementation that is optimal with respect to the said value function. We propose a novel maximum satisfiability encoding of the search for an optimal implementation (within the given bound on the implementation size). We iteratively increase the bound on the implementation size until a termination criterion, such as a threshold over the value function, is met.

Notes

References

  1. 1.
    Almagor, S., Boker, U., Kupferman, O.: Formally reasoning about quality. J. ACM 63(3), 24:1–24:56 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alur, R., Kanade, A., Weiss, G.: Ranking automata and games for prioritized requirements. In: Proceedings of International Conference on Computer-Aided Verification, vol. 5123 of LNCS (2008)Google Scholar
  3. 3.
    Baier, C., Katoen, J.: Principles of model checking. MIT press (2008) Google Scholar
  4. 4.
    Berg, J., Hyttinen, A., Järvisalo, M.: Applications of MaxSAT in data analysis. In: Pragmatics of SAT (2015)Google Scholar
  5. 5.
    Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS Press, Amsterdam (2009)zbMATHGoogle Scholar
  6. 6.
    Bloem, R., Chatterjee, K., Henzinger, T. A., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Proceedings of International Conference on Computer-Aided Verification, vol. 5643 of LNCS, pp. 140–156 (2009)CrossRefGoogle Scholar
  7. 7.
    Cimatti, A., Roveri, M., Schuppan, V., Tchaltsev, A.: Diagnostic information for realizability. In: Proceedings of International Conference on Verification, Model Checking, and Abstract Interpretation, LNCS (2008)Google Scholar
  8. 8.
    Cimatti, A., Roveri, M., Schuppan, V., Tonetta, S.: Boolean abstraction for temporal logic satisfiability. In: Proceedings of International Conference on Computer-Aided Verification, vol. 4590 of LNCS, pp. 532–546 (2007)CrossRefGoogle Scholar
  9. 9.
    Dimitrova, R., Ghasemi, M., Topcu, U.: Maximum realizability for linear temporal logic specifications. In: Proceedings of Automated Technology for Verification and Analysis, pp. 458–475. Springer (2018)Google Scholar
  10. 10.
    Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.: Spot 2.0—a framework for LTL and \(\omega \)-automata manipulation. In: Proceedings of Automated Technology for Verification and Analysis, vol. 9938 of LNCS (2016)CrossRefGoogle Scholar
  11. 11.
    Ehlers, R., Raman, V.: Low-effort specification debugging and analysis. In: Proceedings of Workshop on Synthesis, vol. 157 of EPTCS, pp. 117–133 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Faymonville, P., Finkbeiner, B., Rabe, M. N., Tentrup, L.: Encodings of bounded synthesis. In: Proceedings of International Conference on Tools and Algorithms for the Construction and Analysis of Systems, vol. 10205 of LNCS, pp. 354–370 (2017)CrossRefGoogle Scholar
  13. 13.
    Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Transf. 15(5–6), 519–539 (2013) CrossRefGoogle Scholar
  14. 14.
    Janota, M., Lynce, I., Manquinho, V., Marques-Silva, J.: PackUp: tools for package upgradability solving. J. Satisf. Boolean Model. Comput. 8, 89–94 (2012)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Juma, F., Hsu, E. I., McIlraith, S. A.: Preference-based planning via MaxSAT. In: Proceedings of Advances in Artificial Intelligence, vol. 7310 of LNCS, pp. 109–120 (2012)CrossRefGoogle Scholar
  16. 16.
    Kim, K., Fainekos, G. E., Sankaranarayanan, S.: On the minimal revision problem of specification automata. International Journal of Robotics Research 34(12), 1515-1535 (2015)CrossRefGoogle Scholar
  17. 17.
    Kupferman, O., Vardi, M. Y.: Safraless decision procedures. In: Proceedings of IEEE Annual Symposium on Foundations of Computer Science, pp. 531–542 (2005)Google Scholar
  18. 18.
    Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Form. Methods Syst. Des. 19(3), 291–314 (2001)CrossRefGoogle Scholar
  19. 19.
    Lahijanian, M., Almagor, S., Fried, D., Kavraki, L. E., Vardi, M. Y.: This time the robot settles for a cost: a quantitative approach to temporal logic planning with partial satisfaction. In: Proceedings of Association for the Advancement of Artificial Intelligence (2015)Google Scholar
  20. 20.
    Lahijanian, M., Kwiatkowska, M. Z.: Specification revision for Markov decision processes with optimal trade-off. In: Proceedings of IEEE Conference on Decision and Control, pp. 7411–7418, (2016)Google Scholar
  21. 21.
    Lahijanian, M., Maly, M.R., Fried, D., Kavraki, L.E., Kress-Gazit, H., Vardi, M.Y.: Iterative temporal planning in uncertain environments with partial satisfaction guarantees. IEEE Trans. Robot. 32(3), 583–599 (2016)CrossRefGoogle Scholar
  22. 22.
    Martins, R., Manquinho, V. M., Lynce, I.: Open-WBO: a modular MaxSAT solver. In: Proceedings of SAT’14, vol. 8561 of LNCS, pp. 438–445 (2014)Google Scholar
  23. 23.
    Park, J. D.: Using weighted MAX-SAT engines to solve MPE. In: Proceedings of American Association for Artificial Intelligence, pp. 682–687 (2002)Google Scholar
  24. 24.
    Pnueli, A.: The temporal logic of programs. In: Annual Symposium on Foundations of Computer Science, pp. 46–57. IEEE (1977)Google Scholar
  25. 25.
    Raman, V., Kress-Gazit, H.: Towards minimal explanations of unsynthesizability for high-level robot behaviors. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 757–762 (2013)Google Scholar
  26. 26.
    Robinson, N., Gretton, C., Pham, D. N., Sattar, A.: Partial weighted MaxSAT for optimal planning. In: Proceedings of Pacific rim international conference on artificial intelligence, pp. 231–243. Springer (2010)Google Scholar
  27. 27.
    Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Proceedings of Automated Technology for Verification and Analysis, vol. 4762 of LNCS, pp. 474–488 (2007)Google Scholar
  28. 28.
    Schuppan, V.: Towards a notion of unsatisfiable and unrealizable cores for LTL. Sci. Comput. Program. 77(7–8), 908–939 (2012)CrossRefGoogle Scholar
  29. 29.
    Tabuada, P., Neider, D.: Robust linear temporal logic. In: Proceedings of Computer Science Logic, vol. 62 of LIPIcs, pp. 10:1–10:21 (2016)Google Scholar
  30. 30.
    Tomita, T., Ueno, A., Shimakawa, M., Hagihara, S., Yonezaki, N.: Safraless LTL synthesis considering maximal realizability. Acta Inf. 54(7), 655–692 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tumova, J., Hall, G. C., Karaman, S., Frazzoli, E., Rus, D.: Least-violating control strategy synthesis with safety rules. In: Proceedings of ACM International Conference on Hybrid Systems: Computation and Control (2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of LeicesterLeicesterUK
  2. 2.University of Texas at AustinAustinUSA

Personalised recommendations