Advertisement

Acta Informatica

, Volume 56, Issue 6, pp 521–535 | Cite as

Parikh matrices for powers of words

  • Adrian Atanasiu
  • Ghajendran Poovanandran
  • Wen Chean TehEmail author
Original Article
  • 52 Downloads

Abstract

Certain upper triangular matrices, termed as Parikh matrices, are often used in the combinatorial study of words. Given a word, the Parikh matrix of that word elegantly computes the number of occurrences of certain predefined subwords in that word. In this paper, we compute the Parikh matrix of any word raised to an arbitrary power. Furthermore, we propose canonical decompositions of both Parikh matrices and words into normal forms. Finally, given a Parikh matrix, the relation between its normal form and the normal forms of words in the corresponding M-equivalence class is established.

Mathematics Subject Classification

68R15 05A05 

Notes

Acknowledgements

The second and third authors gratefully acknowledge support for this research by a Research University Grant No. 1011/PMATHS/8011019 of Universiti Sains Malaysia. This paper is a part of the second author’s Ph.D. work.

References

  1. 1.
    Atanasiu, A.: Binary amiable words. Internat. J. Found. Comput. Sci. 18(2), 387–400 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Atanasiu, A., Atanasiu, R., Petre, I.: Parikh matrices and amiable words. Theor. Comput. Sci. 390(1), 102–109 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Atanasiu, A., Atanasiu, R.-F.: Enriching Parikh matrix mappings. Int. J. Comput. Math. 90(3), 511–521 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Atanasiu, A., Martín-Vide, C., Mateescu, A.: On the injectivity of the Parikh matrix mapping. Fund. Inform. 49(4), 289–299 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Atanasiu, A., Teh, W.C.: A new operator over Parikh languages. Int. J. Found. Comput. Sci. 27(6), 757–769 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bera, S., Mahalingam, K.: Some algebraic aspects of Parikh q-matrices. Int. J. Found. Comput. Sci. 27(4), 479–499 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Černý, A.: Generalizations of Parikh mappings. RAIRO Theor. Inform. Appl. 44(2), 209–228 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Clark, A., Watkins, C.: Some alternatives to Parikh matrices using string kernels. Fund. Inform. 84, 291–303 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Egecioglu, Ö.: A q-matrix encoding extending the parikh matrix mapping. Proc. ICCC 2004, 147–153 (2004)Google Scholar
  10. 10.
    Mahalingam, K., Bera, S., Subramanian, K.G.: Properties of Parikh matrices of words obtained by an extension of a restricted shuffle operator. Int. J. Found. Comput. Sci. 29(3), 403–413 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Manuch, J.: Characterization of a word by its subwords. In: Rozenberg, G. (ed.) Developments in Language Theory, pp. 210–219. World Scientific Publ. Co., Singapore (2000)CrossRefGoogle Scholar
  12. 12.
    Mateescu, A., Salomaa, A., Salomaa, K., Yu, S.: A sharpening of the Parikh mapping. Theor. Inform. Appl. 35(6), 551–564 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Mateescu, A., Salomaa, A., Yu, S.: Subword histories and Parikh matrices. J. Comput. System Sci. 68(1), 1–21 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Parikh, R.J.: On context-free languages. J. Assoc. Comput. Mach. 13, 570–581 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Poovanandran, G., Teh, W.C.: On M-equivalence and strong M-equivalence for Parikh matrices. Int. J. Found. Comput. Sci. 29(1), 123–137 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Poovanandran, G., Teh, W.C.: Strong \(2\cdot t\) and strong \(3\cdot t\) transformations for strong M-equivalence. Int. J. Found. Comput. Sci. (in press)Google Scholar
  17. 17.
    Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 1. Springer, Berlin (1997)zbMATHCrossRefGoogle Scholar
  18. 18.
    Salomaa, A.: Criteria for the matrix equivalence of words. Theor. Comput. Sci. 411(16), 1818–1827 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Salomaa, A., Yu, S.: Subword occurrences, Parikh matrices and Lyndon images. Int. J. Found. Comput. Sci. 21(1), 91–111 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Şerbănuţă, T.-F.: Extending Parikh matrices. Theor. Comput. Sci. 310, 233–246 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Şerbănuţă, V.N.: On Parikh matrices, ambiguity, and prints. Int. J. Found. Comput. Sci. 20(1), 151–165 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Şerbănuţă, V.N., Şerbănuţă, T.F.: Injectivity of the Parikh matrix mappings revisited. Fund. Inform. 73(1), 265–283 (2006)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Subramanian, K.G., Huey, A.M., Nagar, A.K.: On Parikh matrices. Int. J. Found. Comput. Sci. 20(2), 211–219 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Teh, W.C.: On core words and the Parikh matrix mapping. Int. J. Found. Comput. Sci. 26(1), 123–142 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Teh, W.C.: Parikh matrices and Parikh rewriting systems. Fund. Inform. 146, 305–320 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Teh, W.C., Atanasiu, A.: On a conjecture about Parikh matrices. Theor. Comput. Sci. 628, 30–39 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Teh, W.C., Atanasiu, A., Poovanandran, G.: On strongly M-unambiguous prints and Şerbănuţă’s conjecture for Parikh matrices. Theor. Comput. Sci. 719, 86–93 (2018)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceBucharest UniversityBucharestRomania
  2. 2.School of Mathematical SciencesUniversiti Sains MalaysiaUSMMalaysia

Personalised recommendations