Advertisement

Acta Informatica

, Volume 56, Issue 6, pp 487–519 | Cite as

The model checking fingerprints of CTL operators

  • Andreas Krebs
  • Arne MeierEmail author
  • Martin Mundhenk
Original Article
  • 58 Downloads

Abstract

The aim of this study is to understand the inherent expressive power of CTL operators. We investigate the complexity of model checking for all CTL fragments with one CTL operator and arbitrary Boolean operators. This gives us a fingerprint of each CTL operator. The comparison between the fingerprints yields a hierarchy of the operators that mirrors their strength with respect to model checking.

Notes

Acknowledgements

The authors thank Stephan Fischer for helpful discussions on the proof of Lemma 4 and Martin Krejka for a simplification of the proof of Lemma 14. The authors also thank the referees for many valuable comments.

References

  1. 1.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002).  https://doi.org/10.1145/585265.585270 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bauland, M., Mundhenk, M., Schneider, T., Schnoor, H., Schnoor, I., Vollmer, H.: The tractability of model checking for LTL: the good, the bad, and the ugly fragments. TOCL 12(2), 26 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bauland, M., Schneider, T., Schnoor, H., Schnoor, I., Vollmer, H.: The complexity of generalized satisfiability for linear temporal logic. LMCS 5(1), 1–21 (2009)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Beyersdorff, O., Meier, A., Mundhenk, M., Schneider, T., Thomas, M., Vollmer, H.: Model checking CTL is almost always inherently sequential. LMCS 7(2), 1–21 (2011)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with boolean blocks, part I: Post’s lattice with applications to complexity theory. SIGACT 34(4), 38–52 (2003)CrossRefGoogle Scholar
  6. 6.
    Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28, 114–133 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chandra, A.K., Tompa, M.: The complexity of short two-person games. Discrete Appl. Math. 29(1), 21–33 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Clarke, E., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. TOPLAS 8(2), 244–263 (1986)CrossRefzbMATHGoogle Scholar
  9. 9.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronisation skeletons using branching time temporal logic. In: Logic of Programs, LNCS, vol. 131, pp. 52–71. Springer (1981)Google Scholar
  10. 10.
    Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Inf. Control 64(1–3), 2–21 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branching versus linear time. J. ACM 33(1), 151–178 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. SIAM J. Comput. 29(1), 132–158 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fischer, M.J., Ladner, R.E.: Propositional modal logic of programs. JCSS 18, 194–211 (1979)zbMATHGoogle Scholar
  14. 14.
    Immerman, N.: Number of quantifiers is better than number of tape cells. J. Comput. Syst. Sci. 22(3), 384–406 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Krebs, A., Meier, A., Mundhenk, M.: The model checking fingerprints of CTL operators. In: Grandi, F., Lange, M., Lomuscio, A. (eds.) 22nd International Symposium on Temporal Representation and Reasoning, TIME 2015, Kassel, Germany, pp. 101–110. IEEE (2015)Google Scholar
  16. 16.
    Kupferman, O., Sattler, U., Vardi, M.Y.: The complexity of the graded \(\mu \)-calculus. In: Voronkov, A. (ed.) 18th International Conference on Automated Deduction (CADE) Copenhagen, Denmark, pp. 423–437. Springer (2002)Google Scholar
  17. 17.
    Laroussinie, F.: About the expressive power of CTL combinators. IPL 54(6), 343–345 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Meier, A.: On the complexity of modal logic variants and their fragments. Ph.D. thesis, Leibniz Universität Hannover, Institut für Theoretische Informatik (2011)Google Scholar
  19. 19.
    Meier, A., Müller, J.S., Mundhenk, M., Vollmer, H.: Complexity of model checking for logics over Kripke models. Bull. EATCS 108, 50–89 (2012)zbMATHGoogle Scholar
  20. 20.
    Meier, A., Mundhenk, M., Thomas, M., Vollmer, H.: The complexity of satisfiability for fragments of CTL and \(\text{ CTL }^*\). IJFCS 20(05), 901–918 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Meier, A., Mundhenk, M., Thomas, M., Vollmer, H.: Erratum: The complexity of satisfiability for fragments of CTL and \({\text{ CTL }}^*\). Int. J. Found. Comput. Sci. 26(8), 1189 (2015).  https://doi.org/10.1142/S012905411592001X CrossRefzbMATHGoogle Scholar
  22. 22.
    Mundhenk, M., Weiß, F.: The complexity of model checking for intuitionistic logics and their modal companions. In: Proceedings of RP’10, LNCS, vol. 6227, pp. 146–160. Springer (2010)Google Scholar
  23. 23.
    Mundhenk, M., Weiß, F.: An AC\(^1\)-complete model checking problem for intuitionistic logic. Comput. Complex. 23(4), 637–669 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar
  25. 25.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th FOCS, pp. 46–57. IEEE Computer Society Press (1977)Google Scholar
  26. 26.
    Post, E.: The two-valued iterative systems of mathematical logic. Ann. Math. Stud. 5, 1–122 (1941)MathSciNetGoogle Scholar
  27. 27.
    Pratt, V.R.: A near-optimal method for reasoning about action. JCSS 20(2), 231–254 (1980)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Prior, A.N.: Time and Modality. Clarendon Press, Oxford (1957)zbMATHGoogle Scholar
  29. 29.
    Prior, A.N.: Past, Present, and Future. Clarendon Press, Oxford (1967)CrossRefzbMATHGoogle Scholar
  30. 30.
    Schnoebelen, P.: The complexity of temporal logic model checking. In: AiML, pp. 393–436. King’s College Publications (2002)Google Scholar
  31. 31.
    Vardi, M.Y., Stockmeyer, L.: Improved upper and lower bounds for modal logics of programs: preliminary report. In: STOC ’85, LNCS, pp. 240–251 (1985)Google Scholar
  32. 32.
    Vardi, M.Y., Stockmeyer, L.: Lower bound in full (2EXPTIME-hardness for \(\text{ CTL }^*\)-SAT). http://www.cs.rice.edu/~vardi/papers/ctl_star_lower_bound.pdf (1985). Accessed 31 July 2018

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Arbeitsbereich Theoretische Informatik/Formale Sprachen, Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenGermany
  2. 2.Institut für Theoretische InformatikLeibniz Universität HannoverHannoverGermany
  3. 3.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations