Acta Informatica

, Volume 52, Issue 4–5, pp 393–442 | Cite as

Denotational fixed-point semantics for constructive scheduling of synchronous concurrency

  • Joaquín Aguado
  • Michael MendlerEmail author
  • Reinhard von Hanxleden
  • Insa Fuhrmann
Original Article


The synchronous model of concurrent computation (SMoCC) is well established for programming languages in the domain of safety-critical reactive and embedded systems. Translated into mainstream C/Java programming, the SMoCC corresponds to a cyclic execution model in which concurrent threads are synchronised on a logical clock that cuts system computation into a sequence of macro-steps. A causality analysis verifies the existence of a schedule on memory accesses to ensure each macro-step is deadlock-free and determinate. We introduce an abstract semantic domain \(I(\mathbb {D}, \mathbb {P})\) and an associated denotational fixed-point semantics for reasoning about concurrent and sequential variable accesses within a synchronous cycle-based model of computation. We use this domain for a new and extended behavioural definition of Berry’s causality analysis in terms of approximation intervals. The domain \(I(\mathbb {D}, \mathbb {P})\) extends the domain \(I(\mathbb {D})\) from our previous work and fixes a mistake in the treatment of initialisations. Based on this fixed-point semantics we propose the notion of Input Berry-constructiveness (IBC) for synchronous programs. This new IBC class lies properly between strong (SBC) and normal Berry-constructiveness (BC) defined in previous work. SBC and BC are two ways to interpret the standard constructive semantics of synchronous programming, as exemplified by imperative SMoCC languages such as Esterel or Quartz. SBC is often too restrictive as it requires all variables to be initialised by the program. BC can be too permissive because it initialises all variables to a fixed value, by default. Where the initialisation happens through the memory, e.g., when carrying values from one synchronous tick to the next, then IBC is more appropriate. IBC links two levels of execution, the macro-step level and the micro-step level. We prove that the denotational fixed-point analysis for IBC, and hence Berry’s causality analysis, is sound with respect to operational micro-level scheduling. The denotational model can thus be viewed as a compositional presentation of a synchronous scheduling strategy that ensures reactiveness and determinacy for imperative concurrent programming.



This work has been supported by the German National Research Council DFG as part of the PRETSY Project (HA 4407/6-1, ME 1427/6-1). The authors would also like to thank the anonymous reviewers for their trenchant yet constructive criticisms and their useful suggestions regarding related work and expository improvements of the paper.


  1. 1.
    Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Comput. 163(2), 409–470 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Aceto, L., Ingolfsdottir, A.: CPO models for compact GSOS languages. Inf. Comput. 129(2), 107–141 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Aguado, J., Mendler, M.: Constructive semantics for instantaneous reactions. Theor. Comput. Sci. 241, 931–961 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aguado, J., Mendler, M., von Hanxleden, R., Fuhrmann, I.: Grounding synchronous deterministic concurrency in sequential programming. In: Proceedings of the 23rd European Symposium on Programming (ESOP’14). LNCS 8410, pp. 229–248. Springer, Grenoble, France (2014)Google Scholar
  5. 5.
    Aguado, J., Mendler, M., von Hanxleden, R., Fuhrmann, I.: Denotational fixed-point semantics for constructive scheduling of synchronous concurrency. Technical report 96, University of Bamberg, Faculty of Information Systems and Applied Computer Sciences (2015). ISSN 0937–3349Google Scholar
  6. 6.
    Andalam, S., Roop, P.S., Girault, A.: Deterministic, predictable and light-weight multithreading using PRET-C. In: Proceedings of the Conference on Design. Automation and Test in Europe (DATE’10), pp. 1653–1656. Dresden, Germany (2010)Google Scholar
  7. 7.
    Baudart, G., Mandel, L., Pouzet, M.: Programming mixed music in ReactiveML. In: Proceedings of the First ACM SIGPLAN Workshop on Functional Art. Music, Modeling & #38; Design, FARM ’13, pp. 11–22. ACM, New York, NY, USA (2013)Google Scholar
  8. 8.
    Benveniste, A., Caillaud, B., Guernic, P.L.: Compositionality in dataflow synchronous languages: specification and distributed code generation 1,2,3. Inf. Comput. 163(1), 125–171 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Guernic, P.L., de Simone, R.: The Synchronous Languages Twelve Years Later. In: Proceedings of IEEE, Special Issue on Embedded Systems, vol. 91, pp. 64–83. IEEE, Piscataway, NJ, USA (2003)Google Scholar
  10. 10.
    Bergstra, J., Ponse, A., Smolka, S. (eds.): Handbook of Process Algebra. Elsevier (2001)Google Scholar
  11. 11.
    Berry, G.: The foundations of Esterel. In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 425–454. MIT Press, Cambridge (2000)Google Scholar
  12. 12.
    Berry, G.: The Constructive Semantics of Pure Esterel. Draft Book, Version 3.0, Centre de Mathématiques Appliqées, Ecole des Mines de Paris and INRIA, 2004 route des Lucioles, 06902 Sophia-Antipolis CDX, France (2002)Google Scholar
  13. 13.
    Berry, G., Curien, P.L., Lévy, J.J.: Full abstraction for sequential languages: the state of the art. In: Nivat, M., Reynolds, J.C. (eds.) Algebraic Semantics, pp. 89–132. Cambridge University Press, Cambridge (1985)Google Scholar
  14. 14.
    Berry, G., Gonthier, G.: The Esterel synchronous programming language: design, semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)zbMATHCrossRefGoogle Scholar
  15. 15.
    Berry, G., Nicolas, C., Serrano, M.: Hiphop: A synchronous reactive extension for Hop. In: Proceedings of the 1st ACM SIGPLAN International Workshop on Programming Language and Systems Technologies for Internet Clients. PLASTIC ’11, pp. 49–56. ACM, New York, NY, USA (2011)Google Scholar
  16. 16.
    Boussinot, F.: Reactive C: an extension of C to program reactive systems. Softw. Pract. Exp. 21(4), 401–428 (1991)CrossRefGoogle Scholar
  17. 17.
    Boussinot, F.: Fairthreads: mixing cooperative and preemptive threads in C. Concurr. Comput. Pract. Exp. 18(5), 445–469 (2006)CrossRefGoogle Scholar
  18. 18.
    Brzozowski, J.A., Seger, C.J.H.: Asynchronous Circuits. Springer, New York (1995)CrossRefGoogle Scholar
  19. 19.
    Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: Lustre: a declarative language for programming synchronous systems. In: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL’87), pp. 178–188. ACM, Munich, Germany (1987)Google Scholar
  20. 20.
    Caspi, P., Pouzet, M.: A co-iterative characterization of synchronous stream functions. Electron. Notes Theor. Comput. Sci. 11(0), 1–21 (1998). CMCS’98, First Workshop on Coalgebraic Methods in Computer ScienceGoogle Scholar
  21. 21.
    Cleaveland, R., Lüttgen, G., Mendler, M.: An algebraic theory of multiple clocks. In: CONCUR ’97, LNCS, vol. 1243, pp. 166–180. Springer (1997)Google Scholar
  22. 22.
    Cohen, A., Duranton, M., Eisenbeis, C., Pagetti, C., Plateau, F., Pouzet, M.: N-synchronous Kahn networks: a relaxed model of synchrony for real-time systems. Symposium on Principles of Programming Languages. POPL’06, pp. 180–193. ACM, New York, NY, USA (2006)Google Scholar
  23. 23.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002)zbMATHCrossRefGoogle Scholar
  24. 24.
    de Roever, W.P., Lüttgen, G., Mendler, M.: What is in a step: new perspectives on a classical question. In: Manna, Z., Peled, D.A. (eds.) Time for Verification, pp. 370–399. Springer LNCS 6200 (2010)Google Scholar
  25. 25.
    Duffin, R.J.: Topology of series-parallel networks. J. Math. Anal. Appl. 10(2), 303–318 (1965)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Edwards, S.A.: Tutorial: compiling concurrent languages for sequential processors. ACM Trans. Design Autom. Electron. Syst. 8(2), 141–187 (2003)CrossRefGoogle Scholar
  27. 27.
    Edwards, S.A., Lee, E.A.: The semantics and execution of a synchronous block-diagram language. Sci. Comput. Program. 48(1), 21–42 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Edwards, S.A., Lee, E.A.: The semantics and execution of a synchronous block-diagram language. In: Science of Computer Programming, vol. 48. Elsevier (2003)Google Scholar
  29. 29.
    Ésik, Z.: Axiomatizing the least fixed point operation and binary supremum. In: Clote, P., Schwichtenberg, H. (eds.) Computer Science Logic (CSL’00), LNCS 1862, pp. 302–316. Springer (2000)Google Scholar
  30. 30.
    Fiore, M., Moggi, E., Sangiorgi, D.: A fully abstract model for the \(\pi \)-calculus. Inf. Comput. 179(1), 76–117 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Gamatié, A., Gonnord, L.: Static analysis of synchronous programs in Signal for efficient design of multi-clocked embedded systems. ACM Sigplan Notices 46(5), 71–80 (2011)CrossRefGoogle Scholar
  32. 32.
    Gemünde, M., Brandt, J., Schneider, K.: Clock refinement in imperative synchronous languages. EURASIP J. Embed. Syst. 2013, 3 (2013)CrossRefGoogle Scholar
  33. 33.
    Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimulation as a congruence. Inf. Comput. 100, 202–260 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Guernic, P.L., Goutier, T., Borgne, M.L., Maire, C.L.: Programming real time applications with SIGNAL. Proc. IEEE 79(9), 1321–1336 (1991)CrossRefGoogle Scholar
  35. 35.
    Halbswachs, N.: Synchronous Programming of Reactive Systems. Kluwer Academic Publishers, Dordrecht (1993)CrossRefGoogle Scholar
  36. 36.
    Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)CrossRefGoogle Scholar
  37. 37.
    Hamon, G.: A denotational semantics for Stateflow. In: EMSOFT’05: Proceedings of the 5th ACM International Conference on Embedded Software, pp. 164–172. ACM Press, New York, NY, USA (2005)Google Scholar
  38. 38.
    Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Trans. Softw. Eng. 5(4), 293–333 (1996)CrossRefGoogle Scholar
  40. 40.
    Hennessy, M.: Acceptance trees. J. ACM 32(4), 896–928 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Hennessy, M., Regan, T.: A process algebra for timed systems. Inf. Comput. 117, 221–239 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper Saddle River, NJ (1985)zbMATHGoogle Scholar
  43. 43.
    Huizing, C., Gerth, R., de Roever, W.: Modeling Statecharts behavior in a fully abstract way. In: Dauchet, M., Nivat, M. (eds.) 13th CAAP (CAAP ’88). Lecture Notes in Computer Science, vol. 299, pp. 271–294. Springer, Nancy, France (1988)Google Scholar
  44. 44.
    Hyland, M., Ong, L.: On full abstraction for PCF: I. II and III. Inf. Comput. 163(2), 285–408 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Ingólfsdóttir, A., Schalk, A.: A fully abstract denotational model for observational precongruence. Theor. Comput. Sci. 254(1–2), 35–61 (2001)zbMATHCrossRefGoogle Scholar
  46. 46.
    Kahn, G.: The semantics of a simple language for parallel programming. In: Rosenfeld, J.L. (ed.) Information Processing 74: In: Proceedings of the IFIP Congress 74, pp. 471–475. North-Holland Publishing Co., IFIP (1974)Google Scholar
  47. 47.
    Kahn, G., MacQueen, D.B.: Coroutines and networks of parallel processes. In: IFIP Congress, pp. 993–998 (1977)Google Scholar
  48. 48.
    Kok, J.N.: Denotational semantics of nets with nondeterminism. In: Robinet, B., Wilhelm, R. (eds.) European Symposium on Programming (ESOP’86), LNCS 213, pp. 237–249. Springer (1986)Google Scholar
  49. 49.
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comput. 110(2), 366–390 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    Kuper, L., Turon, A., Krishnaswami, N.R., Newton, R.R.: Freeze after writing: Quasi-deterministic parallel programming with LVars. In: Principles of Programming Languages (POPL’14), pp. 257–270. ACM, New York, USA (2014)Google Scholar
  51. 51.
    Lavagno, L., Sentovich, E.: ECL: a specification environment for system-level design. In: Proceedings of 36th ACM/IEEE Conference on Design Automation (DAC’99), pp. 511–516. ACM (1999)Google Scholar
  52. 52.
    Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. In: Proceedings of the IEEE, vol. 75, pp. 1235–1245. IEEE Computer Society Press (1987)Google Scholar
  53. 53.
    Leung, A., Gupta, M., Agarwal, Y., Gupta, R., Jhala, R., Lerner, S.: Verifying GPU kernels by test amplification. In: Programming Language Design and Implementation PLDI 2012, pp. 383–394. ACM, New York, USA (2012)Google Scholar
  54. 54.
    Luettgen, G., Mendler, M.: The intuitionism behind statecharts steps. ACM Trans. Comput. Log. 3(1), 1–41 (2002)CrossRefGoogle Scholar
  55. 55.
    Lüttgen, G., von der Beeck, M., Cleaveland, R.: Statecharts via process algebra. In: Proceedings of 10th International Conference on Concurrency Theory CONCUR’99, pp. 399–414 (1999)Google Scholar
  56. 56.
    Lüttgen, G., Mendler, M.: Towards a model-theory for Esterel. In: Maraninchi, F., Girault, A., Rutten, E. (eds.) SLAP 2002, ENTCS, vol. 65,5. Elsevier Science (2002)Google Scholar
  57. 57.
    Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, Los Altos (1996)zbMATHGoogle Scholar
  58. 58.
    Malik, S.: Analysis of cyclic combinational circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 13(7), 950–956 (1994)zbMATHCrossRefGoogle Scholar
  59. 59.
    Mandel, L., Pasteur, C., Pouzet, M.: Time refinement in a functional synchronous language. In: Principles and Practice of Declarative Programming (PPDP’13), pp. 169–180. ACM (2013)Google Scholar
  60. 60.
    Mandel, L., Pouzet, M.: ReactiveML: a reactive extension to ML. In: Proceedings of 7th ACM SIGPLAN Int’l Conference on Principles and Practice of Declarative Programming, pp. 82–93 (2005)Google Scholar
  61. 61.
    Maraninchi, F.: The Argos language: graphical representation of automata and description of reactive systems. In: IEEE Workshop on Visual Languages (1991)Google Scholar
  62. 62.
    Maraninchi, F., Rémond, Y.: Argos: an automaton-based synchronous language. Comput. Lang. 27(27), 61–92 (2001)zbMATHCrossRefGoogle Scholar
  63. 63.
    Mendler, M., Lüttgen, G.: Is observational congruence axiomatisable in equational Horn logic? Inf. Comput. 208(6), 634–651 (2010)zbMATHCrossRefGoogle Scholar
  64. 64.
    Mendler, M., Shiple, T.R., Berry, G.: Constructive boolean circuits and the exactness of timed ternary simulation. Form. Methods Syst. Des. 40(3), 283–329 (2012)zbMATHCrossRefGoogle Scholar
  65. 65.
    Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  66. 66.
    Motika, C., von Hanxleden, R., Heinold, M.: Programming deterministice reactive systems with Synchronous Java (invited paper). In: Proceedings of the 9th Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS 2013), IEEE Proceedings. Paderborn, Germany (2013)Google Scholar
  67. 67.
    Ngo, V.C., Talpin, J.P., Gautier, T.: Precise deadlock detection for polychronous data-flow specifications. In: Proceedings of the Electronic System Level Synthesis Conference (ESLsyn), pp. 1–6. IEEE (2014)Google Scholar
  68. 68.
    Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical report DAIMI FN-19, University of Aarhus, Denmark (1981)Google Scholar
  69. 69.
    Pnueli, A., Shalev, M.: What is in a step: on the semantics of Statecharts. In: Proceedings of International Conference on Theoretical Aspects of Computer Software (TACS’91), pp. 244–264. Springer, London, UK (1991)Google Scholar
  70. 70.
    Potop-Butucaru, D., Edwards, S.A., Berry, G.: Compiling Esterel. Springer, Berlin (2007)Google Scholar
  71. 71.
    Pouzet, M., Raymond, P.: Modular static scheduling of synchronous data-flow networks—an efficient symbolic representation. Des. Autom. Embed. Syst. 14(3), 165–192 (2010)CrossRefGoogle Scholar
  72. 72.
    Schneider, K.: The synchronous programming language Quartz. Internal Report 375, Department of Computer Science, University of Kaiserslautern, Kaiserslautern, Germany (2009)Google Scholar
  73. 73.
    Schneider, K., Brandt, J., Schuele, T.: Causality analysis of synchronous programs with delayed actions. In: Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES’04), pp. 179–189. ACM, Washington DC, USA (2004)Google Scholar
  74. 74.
    Schneider, K., Brandt, J., Schuele, T., Tuerk, T.: Maximal causality analysis. In: Conference on Application of Concurrency to System Design (ACSD’05), pp. 106–115. IEEE Computer Society (2005)Google Scholar
  75. 75.
    Schneider, K., Brandt, J., Schüle, T., Türk, T.: Improving constructiveness in code generators. In: Maraninchi, F., Pouzet, M., Roy, V. (eds.) International Workshop on Synchronous Languages, Applications, and Programming (SLAP’05), pp. 1–19. ENTCS, Edinburgh, Scotland, UK (2005)Google Scholar
  76. 76.
    Shiple, T.R., Berry, G., Touati, H.: Constructive Analysis of Cyclic Circuits. In: Proceedings of European Design and Test Conference (ED&TC’96), Paris, France, pp. 328–333. IEEE Computer Society Press (1996)Google Scholar
  77. 77.
    Talpin, J.P., Brandt, J., Gemünde, M., Schneider, K., Shukla, S.: Constructive polychronous systems. Sci. Comput. Program. 96(3), 377–394 (2014)CrossRefGoogle Scholar
  78. 78.
    Talpin, J.P., Ouy, J., Gautier, T., Besnard, L., Guernic, P.L.: Compositional design of isochronous systems. Sci. Comput. Program. 77(2), 113–128 (2012)zbMATHCrossRefGoogle Scholar
  79. 79.
    Tardieu, O., Edwards, S.A.: Scheduling-independent threads and exceptions in SHIM. In: Proceedings of the International Conference on Embedded Software (EMSOFT’06), pp. 142–151. ACM (2006)Google Scholar
  80. 80.
    Tardieu, O., Edwards, S.A.: Instanteneous transitions in Esterel. In: Proceedings of Model Driven High-Level Programming of Embedded Systems (SLA++P’07). Braga, Portugal (2007)Google Scholar
  81. 81.
    Vechev, M., Yahav, E., Raman, R., Sarkar, V.: Automatic verification of determinism for structured parallel programs. In: Cousot, R., Martel, M. (eds.) Static Analysis (SAS 2010), LNCS, vol. 6337, pp. 455–471. Springer (2010)Google Scholar
  82. 82.
    von der Beeck, M.: A comparison of Statecharts variants. In: Langmaack, H., de Roever, W., Vytopil, J. (eds.) 3rd International School and Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT ’94), Lecture Notes in Computer Science, vol. 863, pp. 128–148. Springer (1994)Google Scholar
  83. 83.
    von Hanxleden, R.: SyncCharts in C-A Proposal for Light-Weight, Deterministic Concurrency. In: Proceedingsof International Conference on Embedded Software (EMSOFT’09), pp. 225–234. ACM, Grenoble, France (2009)Google Scholar
  84. 84.
    von Hanxleden, R., Duderstadt, B., Motika, C., Smyth, S., Mendler, M., Aguado, J., Mercer, S., O’Brien, O.: SCCharts: sequentially constructive statecharts for safety-critical applications. In: Proceedings of ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’14). ACM (2014)Google Scholar
  85. 85.
    von Hanxleden, R., Mendler, M., Aguado, J., Duderstadt, B., Fuhrmann, I., Motika, C., Mercer, S., O’Brien, O.: Sequentially constructive concurrency—a conservative extension of the synchronous model of computation. In: Design, Automation and Test in Europe (DATE’13), pp. 581–586. IEEE (2013)Google Scholar
  86. 86.
    von Hanxleden, R., Mendler, M., Aguado, J., Duderstadt, B., Fuhrmann, I., Motika, C., Mercer, S., O’Brien, O., Roop, P.: Sequentially constructive concurrency—a conservative extension of the synchronous model of computation. ACM Trans. Embed. Comput. Syst.,Special Issue on Applications of Concurrency to System Design 13(4s), 144:1–144:26 (2014)Google Scholar
  87. 87.
    Yuki, T., Feautrier, P., Rajopadye, S., Saraswat, V.: Array dataflow analysis for polyhedral X10 programs. In: Principles and Practice of Parallel Programming (PPoPP 2013), pp. 23–34. ACM (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Joaquín Aguado
    • 1
  • Michael Mendler
    • 1
    Email author
  • Reinhard von Hanxleden
    • 2
  • Insa Fuhrmann
    • 2
  1. 1.Faculty of Information Systems and Applied Computer SciencesBamberg UniversityBambergGermany
  2. 2.Department of Computer ScienceKiel UniversityKielGermany

Personalised recommendations