Acta Informatica

, Volume 52, Issue 2–3, pp 133–152 | Cite as

State space axioms for T-systems

Original Article

Abstract

T-systems are generalisations of marked graph Petri nets. This paper describes synthesis algorithms that allow bounded or unbounded T-systems to be derived from finite or infinite labelled transition systems satisfying a set of necessary properties. These properties can thus be interpreted as axioms characterising T-system state spaces.

References

  1. 1.
    Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) Lectures on Petri Nets I: Basic Models. Lecture Notes in Computer Science, vol. 1491, pp. 529–586. Springer, Berlin (1999)CrossRefGoogle Scholar
  2. 2.
    Best, E., Devillers, R.: Characterisation of the state spaces of live and bounded marked graph Petri nets. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) Proceedings of LATA’14. LNCS, vol. 8370, pp. 161–172. Springer, Berlin (2014)Google Scholar
  3. 3.
    Best, E., Devillers, R.: Characterisation of the State Spaces of Marked Graph Petri Nets. Submitted Paper. Also available as Technical Report 03–14, Dep. Informatik, Carl von Ossietzky Universität Oldenburg (December 2014)Google Scholar
  4. 4.
    Best, E., Devillers, R.: Synthesis of Persistent Systems. In: Proceedings of the 35rd International Conference on Application and Theory of Petri Nets and Concurrency (Tunis, June 2014). LNCS, vol. 8489. Springer, pp. 111–129 (2014)Google Scholar
  5. 5.
    Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked directed graphs. J. Comput. Syst. Sci. 5(5), 511–523 (1971)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Crespi-Reghizzi, S., Mandrioli, D.: A decidability theorem for a class of vector addition systems. Inf. Process. Lett. 3, 78–80 (1975)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Genrich, H.J., Lautenbach, K.: Synchronisationsgraphen. Acta Inf. 2, 143–161 (1973)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Jones, N., Landweber, L., Lien, Y.: Complexity of some problems in Petri nets. Theor. Comput. Sci. 4, 277–299 (1977)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Keller, R.M.: A Fundamental Theorem of Asynchronous. Parallel Computation Parallel Processing. LNCS, vol. 24. Springer, Berlin (1975)Google Scholar
  10. 10.
    Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  11. 11.
    Recalde, L., Silva, M., Ezpeleta, J., Teruel, E.: Petri nets and manufacturing systems: an examples-driven tour. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets: Advances in Petri Nets, Volume 3098 of Lecture Notes in Computer Science, pp. 742–788. Springer, Berlin (2004)CrossRefGoogle Scholar
  12. 12.
    Schaefer, M., Vogler, W., Jančar, P.: Determinate STG decomposition of marked graphs. In: Ciardo, G., Darondeau, P. (eds.) Proceedings of Applications and Theory of Petri Nets, Miami. LNCS, vol. 3536, pp. 365–384. Springer, Berlin (2005)Google Scholar
  13. 13.
    Teruel, E., Chrza̧stowski-Wachtel, P., Colom, J.M., Silva, M.: On weighted T-systems. In: Jensen, K. (ed.) ATPN’92, LNCS, vol. 616, pp. 348–367 (1992)Google Scholar
  14. 14.
    Teruel, E., Colom, J.M., Silva, M.: Choice-free Petri nets: a model for deterministic concurrent systems with bulk services and arrivals. IEEE Trans. Syst. Man Cybern. Part A 27–1, 73–83 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Computing ScienceCarl von Ossietzky Universität OldenburgOldenburgGermany
  2. 2.Département d’InformatiqueUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations