# State space axioms for T-systems

Original Article

First Online:

- 226 Downloads
- 5 Citations

## Abstract

T-systems are generalisations of marked graph Petri nets. This paper describes synthesis algorithms that allow bounded or unbounded T-systems to be derived from finite or infinite labelled transition systems satisfying a set of necessary properties. These properties can thus be interpreted as axioms characterising T-system state spaces.

## References

- 1.Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) Lectures on Petri Nets I: Basic Models. Lecture Notes in Computer Science, vol. 1491, pp. 529–586. Springer, Berlin (1999)CrossRefGoogle Scholar
- 2.Best, E., Devillers, R.: Characterisation of the state spaces of live and bounded marked graph Petri nets. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) Proceedings of LATA’14. LNCS, vol. 8370, pp. 161–172. Springer, Berlin (2014)Google Scholar
- 3.Best, E., Devillers, R.: Characterisation of the State Spaces of Marked Graph Petri Nets. Submitted Paper. Also available as Technical Report 03–14, Dep. Informatik, Carl von Ossietzky Universität Oldenburg (December 2014)Google Scholar
- 4.Best, E., Devillers, R.: Synthesis of Persistent Systems. In: Proceedings of the 35rd International Conference on Application and Theory of Petri Nets and Concurrency (Tunis, June 2014). LNCS, vol. 8489. Springer, pp. 111–129 (2014)Google Scholar
- 5.Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked directed graphs. J. Comput. Syst. Sci.
**5**(5), 511–523 (1971)CrossRefzbMATHMathSciNetGoogle Scholar - 6.Crespi-Reghizzi, S., Mandrioli, D.: A decidability theorem for a class of vector addition systems. Inf. Process. Lett.
**3**, 78–80 (1975)CrossRefzbMATHMathSciNetGoogle Scholar - 7.Genrich, H.J., Lautenbach, K.: Synchronisationsgraphen. Acta Inf.
**2**, 143–161 (1973)CrossRefzbMATHMathSciNetGoogle Scholar - 8.Jones, N., Landweber, L., Lien, Y.: Complexity of some problems in Petri nets. Theor. Comput. Sci.
**4**, 277–299 (1977)CrossRefzbMATHMathSciNetGoogle Scholar - 9.Keller, R.M.: A Fundamental Theorem of Asynchronous. Parallel Computation Parallel Processing. LNCS, vol. 24. Springer, Berlin (1975)Google Scholar
- 10.Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE
**77**(4), 541–580 (1989)CrossRefGoogle Scholar - 11.Recalde, L., Silva, M., Ezpeleta, J., Teruel, E.: Petri nets and manufacturing systems: an examples-driven tour. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets: Advances in Petri Nets, Volume 3098 of Lecture Notes in Computer Science, pp. 742–788. Springer, Berlin (2004)CrossRefGoogle Scholar
- 12.Schaefer, M., Vogler, W., Jančar, P.: Determinate STG decomposition of marked graphs. In: Ciardo, G., Darondeau, P. (eds.) Proceedings of Applications and Theory of Petri Nets, Miami. LNCS, vol. 3536, pp. 365–384. Springer, Berlin (2005)Google Scholar
- 13.Teruel, E., Chrza̧stowski-Wachtel, P., Colom, J.M., Silva, M.: On weighted T-systems. In: Jensen, K. (ed.) ATPN’92, LNCS, vol. 616, pp. 348–367 (1992)Google Scholar
- 14.Teruel, E., Colom, J.M., Silva, M.: Choice-free Petri nets: a model for deterministic concurrent systems with bulk services and arrivals. IEEE Trans. Syst. Man Cybern. Part A
**27–1**, 73–83 (1997)CrossRefGoogle Scholar

## Copyright information

© Springer-Verlag Berlin Heidelberg 2015