Skip to main content

Forward and backward application of symbolic tree transducers


We consider symbolic tree automata (sta) and symbolic regular tree grammars and their corresponding classes of tree languages: s-recognizable tree languages and s-regular tree languages. We prove that the following three classes are equal: the class of s-recognizable tree languages, the class of s-regular tree languages, and the class of images of classical recognizable tree languages under tree relabelings. Moreover, the sta and the recently introduced variable tree automata are incomparable with respect to their recognition power. Also, we consider symbolic tree transducers (stt) and prove the following theorems. The syntactic composition of two stt computes the composition of the tree transformations computed by each stt, provided that (1) the first one is deterministic or the second one is linear and (2) the first one is total or the second one is nondeleting. Backward application of an stt to any s-recognizable tree language yields an s-recognizable tree language. There is a linear stt of which the range is not an s-recognizable tree language. Forward application of simple and linear stt preserves s-recognizability. A restricted version of both the type checking problem of simple and linear stt, and the inverse type checking problem of arbitrary stt is decidable. Since we deal with trees over infinite alphabets, we require appropriate conditions on sta and stt such that all the proofs are constructive.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    We mean that for every \(\varphi \in \Phi \) there is an explicit algorithm which, for every \( a\in U\) as input, computes \(\varphi (a)\).


  1. 1.

    Alon, N., Milo, T., Neven, F., Suciu, D., Vianu, V.: XML with data values: typechecking revisited. J. Comput. Syst. Sci. 66(4), 688–727 (2003)

    Google Scholar 

  2. 2.

    Baker, B.S.: Composition of top-down and bottom-up tree transductions. Inform. Control 41(2), 186–213 (1979)

    Article  MATH  Google Scholar 

  3. 3.

    Barrero, A.: Unranked tree languages. Pattern Recognit. 24, 9–18 (1991)

    Article  MathSciNet  Google Scholar 

  4. 4.

    Brambilla, M., Ceri, S., Comai, S., Fraternali, P., Manolescu, I.: Specification and design of workflow-driven hypertexts. J. Web Eng. 2, 163–182 (2003)

    Google Scholar 

  5. 5.

    Bouajjani, A., Habermehl, P., Jurski, Y., Sighireanu, M.: Rewriting systems with data. In Proceedings of 16th International Symposium on Fundamentals of Computation Theory (FCT’07), volume 4639 of Lecture Notes in Comput. Sci., pp. 1–22. Springer (2007)

  6. 6.

    Bouajjani, A., Habermehl, P., Mayr, R.: Automatic verification of recursive procedures with one integer parameter. Theoret. Comput. Sci. 295, 85–106 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge languages over unranked alphabets: Version 1, April 2001. Technical Report HKUST-TCSC-2001-0. The Hongkong University of, Science and Technology (2001)

  8. 8.

    Brainerd, W.S.: Tree generating regular systems. Inform. Control 14, 217–231 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  9. 9.

    Brüggemann-Klein, A., Wood, D.: Regular tree languages over non-ranked alphabets. (1998)

  10. 10.

    Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications. Available on: (1997)

  11. 11.

    David, C., Libkin, L., Tan, T.: Efficient reasoning about trees via integer linear programming. ACM Trans. Database Syst. 37(3), 19 (2012)

    Article  Google Scholar 

  12. 12.

    Doner, J.: Tree acceptors and some of their applications. J. Comput. Syst. Sci. 4, 406–451 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  13. 13.

    Engelfriet, J., Maneth, S.: A comparison of pebble tree transducers with macro tree transducers. Acta Inform. 39(9), 613–698 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. 14.

    Engelfriet, J.: Bottom-up and top-down tree transformations—a comparison. Math. Syst. Theory 9(3), 198–231 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  15. 15.

    Fülöp, Z., Vogler, H.: Syntax-Directed Semantics—Formal Models Based on Tree Transducers. Monogr. Theoret. Comput. Sci. EATCS Ser. Springer (1998)

  16. 16.

    Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite alphabets. In: Martin-Vide, C., Dediu, A.-H., Fernau, H. (eds.) 4th International Conference on Languages and Automata (LATA 2010) volume 6031 Lecture Notes in Computer Science, pp. 561–572. Springer, NY (2010)

    Google Scholar 

  17. 17.

    Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)

    MATH  Google Scholar 

  18. 18.

    Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, volume 3, chapter 1, pp. 1–68. Springer, Berlin (1997)

    Chapter  Google Scholar 

  19. 19.

    Kaminski, M., Tan, T.: Tree automata over infinite alphabets. In: Avron, A., et al. (eds.) Trakhtenbrot/Festschrift volume 4800 of Lecture Notes in Conputer Science, pp. 386–423. Springer, Berlin (2008)

    Google Scholar 

  20. 20.

    Maneth, S., Berlea, A., Perst, T., Seidl, H.: XML type checking with macro tree transducers. In: Proceedings of 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2005), pp. 283–294. ACM Press (2005)

  21. 21.

    Mens, I.-E., Rahonis, G.: Variable tree automata over infinite ranked alphabets. In: Winkler, F. (ed.) 4th International Conference on Algebraic Informatics (CAI 2011), volume 6742 of Lecture Notes in Compter Science, pp. 247–260. Springer (2011)

  22. 22.

    Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. J. Comput. Syst. Sci. 66, 688–727 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. 23.

    Murata, M.: Forest-regular languages and tree-regular languages. Unpublished notes (1995)

  24. 24.

    Rounds, W.C.: Mappings and grammars on trees. Math. Syst. Theory 4(3), 257–287 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  25. 25.

    Tan, T.: An automata model for trees with ordered data values. In: Proceedings of 27th Annual IEEE/ACM Symposium on Logic in Computer Science Pages (LICS), pp. 586–595 (2012)

  26. 26.

    Thatcher, J.W.: Characterizing derivation trees of context-free grammars through a generalization of finite automata theory. J. Comput. Syst. Sci. 1(4), 317–322 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  27. 27.

    Thatcher, J.W.: Generalized\(^{2}\) sequential machine maps. J. Comput. Syst. Sci. 4(4), 339–367 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  28. 28.

    Veanes, M., Bjorner, N.: Foundations of finite symbolic tree transducers. Bull. EATCS 105, 141–173 (2011)

    MATH  MathSciNet  Google Scholar 

  29. 29.

    Veanes, M., Bjorner, N.: Symbolic tree transducers. In: Proceedings of Perspectives of System Informatics (PSI 11), volume 7162 of LNCS, pp. 371–387. Springer (2011)

  30. 30.

    Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjorner, N.: Symbolic finite transducers: algorithms and applications. In: Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’12), pp. 137–150. ACM SIGPLAN (2012)

Download references


The authors would like to thank the referees for their work and valuable suggestions, which improved the quality of the paper.

Author information



Corresponding author

Correspondence to Zoltán Fülöp.

Additional information

Research of this author was financially supported by the programs TÁMOP-4.2.1/B-09/1/KONV-2010-0005 and TÁMOP-4.2.2.A-11/1/KONV-2012-0073 of the Hungarian National Development Agency.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fülöp, Z., Vogler, H. Forward and backward application of symbolic tree transducers. Acta Informatica 51, 297–325 (2014).

Download citation