Acta Informatica

, Volume 45, Issue 1, pp 1–31 | Cite as

Picture deformation

  • Symeon BozapalidisEmail author
Original Article


Algebraic picture generation based on a pixel deformation theory is presented. The main tool used is the deformation monoid which simulates the algebraic structure of pictures viewed as rectangular arrays with operations the horizontal and vertical concatenation. Picture languages generated by grammatical systems are considered and a Chomsky-like normal form as well as an iteration lemma are established. Infinite pictures are obtained as the ω-completion of the set of finite pictures ordered by picture refinement. Regular fractal pictures (such as the Sierpinski Carpet, the Cantor dust, etc.) are defined as the components of the least solution of systems whose right hand side members are finite pictures. They constitute the least class of pictures containing the finite pictures and closed under substitution and the self similarity operation. Solving non deterministic picture program schemes we get the so called ∞-refinement languages which consist of finite and infinite pictures. For such languages the emptiness and finiteness problems are decidable.


Rectangular Array Deformation Operator Picture Deformation Substitution Operation Commutative Semiring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bardohl, R., Minas, M., Schurr, A., Taentzer, G.: Application of graph transformations for visual, languages. Handbook of Graph Grammars and Computing by Graph Tranformation, vol. 2, pp. 105–180. World Scientific, Singapore (1999)Google Scholar
  2. 2.
    Bozapalidis S. and Grammatikopoulou A. (2006). Picture codes. RAIRO: Theor. Inf. Appl. 40: 537–550 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bozapalidis S. and Grammatikopoulou A. (2005). Recognizable picture series. J. Autom. Lang. Comb. 10(2/3): 159–183 zbMATHMathSciNetGoogle Scholar
  4. 4.
    Courcelle B. (1983). Fundamental properties of infinite trees. Theor. Comput. Sci. 25: 95–169 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Courcelle, B.: Recursive Applicative program schemes. Handbook of Theoretical Computer Science, Formal Models and Semantics, vol. B, pp. 459-492. Elsevier, Amsterdam (1990)Google Scholar
  6. 6.
    II Culik, K., Kari, J.: Digital images and formal languages. Handbook of Formal Languages, vol. 3, pp. 599–616. Springer, Berlin (1997)Google Scholar
  7. 7.
    Culik, K., Kari, J.: Finite state transformations of images, automata, languages and programming (Szeged, 1995), Lecture Notes in Computer Science, vol. 944, pp. 51–62. Springer, Berlin (1995)Google Scholar
  8. 8.
    II Culik, K., Kari, J.: Image compression using weighted finite automata. Mathematical Foundations of Computer Science (Gdańsk, 1993), Lecture Notes in Computer Science, vol. 711, pp. 392–402. Springer, Berlin (1993)Google Scholar
  9. 9.
    Drews F. (2006). Grammatical Picture Generation, A Tree-Based Approach. Springer, Berlin Google Scholar
  10. 10.
    Drews F. (2001). Tree-based generation of languages of fractals. Theor. Comput. Sci. 262: 377–414 CrossRefGoogle Scholar
  11. 11.
    Giammarresi D. and Restivo A. (1997). Two-dimensional languages. In: Rozenberg, G. and Salomaa, A (eds) Handbook of Formal Languages, Beyond Words, vol 3, pp 215–267. Springer, Berlin Google Scholar
  12. 12.
    Kari J. (2005). Theory of cellular automata: a survey. Theor. Comput. Sci. 334: 3–33 zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kuich W. and Salomaa A. (1986). Semirings, automata, languages. EATCS Monographs on Theoretical Computer Science, vol. 5. Springer, Heidelberg Google Scholar
  14. 14.
    Matz, O.: Regular expressions and context-free grammars for picture languages. In: STACS’97 Proceedings, LNCS, vol. 1200, pp. 283–294. Springer, Heidelberg (1997)Google Scholar
  15. 15.
    Nivat M., Saoudi A. and Dare V.R. (1989). Parallel generation of finite images. Int. J. Pattern Recognit. Artif. Intell. 3(3&4): 279–294 CrossRefGoogle Scholar
  16. 16.
    Nivat M., Saoudi A. and Dare V.R. (1990). Parallel generation of infinite images. Int. J. Comput. Math. 35: 25–42 zbMATHCrossRefGoogle Scholar
  17. 17.
    Rosenfeld F. (1979). Picture Languages: Formal Models for Picture Recognition. Academic, Orlando, FL zbMATHGoogle Scholar
  18. 18.
    Siromoney R., Dare V.R. and Subramanian K.G. (1983). Infinite arrays and infinite computations. Theor. Comput. Sci. 24: 195–205 zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Siromoney R., Subramanian K.G. and Dare V.R. (1984). Infinite arrays and controlled deterministic table 0L array systems. Theor. Comput. Sci. 33: 3–11 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Siromoney R., Subramanian K. and Rangarajan K. (1977). Parallel/sequential rectangular arrays with tables. Int. J. Comput. Math. 6: 143–158 CrossRefMathSciNetGoogle Scholar
  21. 21.
    Wang P.S. (1975). Sequential/parallel matrix array languages. J. Cybern. 5: 19–36 CrossRefGoogle Scholar
  22. 22.
    Wechler W. (1992). Universal algebra, EATCS Monographs on Theoretical Computer Science, vol. 10. Springer, Berlin Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of MathematicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations