Acta Informatica

, Volume 43, Issue 7, pp 501–519 | Cite as

Geometric analysis of nondeterminacy in dynamical systems

Towards a geometric analysis of concurrent systems
  • Rafael Wisniewski
  • Martin Raussen
Original article


This article intends to provide some new insights into concurrency using ideas from the theory of dynamical systems. Inherently discrete concurrency corresponds to a parallel continuous concept: a discrete state space corresponds to a differential manifold, an execution path corresponds to a flow line of a dynamical system. To model non-determinacy within dynamical systems, we introduce a new geometrical object, a section cone. A section cone is a convex set in the space of vector fields, all elements having the same singular points. We show that it is enough to consider flow lines of a single vector field in order to capture the behavior of all flow lines in the section cone up to homotopy (corresponding to equivalence of executions).


Singular Point Partial Order Stable Manifold Differential Inclusion Section Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arwin M. (1980). Smooth Dynamical Systems. World Scientific, Singapore Google Scholar
  2. 2.
    Aubin, J.-P.: Viability Theory (Systems and Control: Foundations and Applications). Birkhauser (1991)Google Scholar
  3. 3.
    Banyaga A. and Hurtubise D. (2004). Lectures on Morse Homology. Kluwer, Dordrecht zbMATHGoogle Scholar
  4. 4.
    Barker G. (1981). Theory of cones. Linear Algebra and Its Applications. 39: 263–291 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cohen, R.: Topics in Morse Theory: Lecture Notes. Stanford University (1991)Google Scholar
  6. 6.
    Fahrenberg, U.: Higher-dimensional automata from a topological viewpoint. Ph.D. Thesis, University (2005)Google Scholar
  7. 7.
    Fajstrup L., Goubault E. and Raussen M. (2006). Algebraic Topology and Concurrency. Theoretical Computer Science 357: 241–278 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Goubault, E.: The geometry of concurrency. Ph.D. Thesis, Ecole Normale Superieure, Paris (1995)Google Scholar
  9. 9.
    Goubault, E., Jensen, T.: Homology of higher dimensional automata. In: CONCUR’92, Lecture Notes in Computer Science, vol. 630. Springer, Heidelberg (1992)Google Scholar
  10. 10.
    Handron D. (2002). Generalized billiard paths and Morse theory for manifolds with corners. Topology Appl. 126: 83–118 zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hirsch M.W. (1976). Differential Topology. Springer, Heidelberg zbMATHGoogle Scholar
  12. 12.
    Hirsch M.W. and Smale S. (1974). Differential Equations, Dynamical Systems and Linear Algebra. Academic, New York zbMATHGoogle Scholar
  13. 13.
    Meyer K.R. (1968). Energy functions for Morse-Smale systems. Am. J. Math. 90(4): 1031–1040 zbMATHCrossRefGoogle Scholar
  14. 14.
    Milnor J. (1973). Morse Theory. Annals of Mathematics Studies. Princeton University Press, Princeton Google Scholar
  15. 15.
    Munkres J. (2000). Topology. Prentice-Hall, Englewood Chiffs zbMATHGoogle Scholar
  16. 16.
    Newhouse S.E., Palis J. and Takens F. (1983). Bifurcations and stability of family of diffeomorphisms. mathématiques de l’I.H.É.S. 57: 5–71 zbMATHMathSciNetGoogle Scholar
  17. 17.
    Palis J. and de Melo W. (1982). Geometric Theory of Dynamical Systems. Springer, Heidelberg zbMATHGoogle Scholar
  18. 18.
    Palis, J., Smale, S.: Structural stability theorems. In: Global Analysis. Proceedings of Symposium in Pure, Math. vol. XIV. Americal Math. Soc., pp. 223–231 (1970)Google Scholar
  19. 19.
    Peixoto M. (1962). Structural stability on two-dimensional manifolds. Topology 1: 101–120 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Pratt, V.: Modeling concurrency with geometry. In: 18th ACM Symposium on Principles of Languages, pp. 311–322. ACM Press, New York (1991)Google Scholar
  21. 21.
    Schwarz, M.: Morse Homology. Birkhauser (1993)Google Scholar
  22. 22.
    Shub M. (1986). Global Stability of Dynamical Systems. Springer, Heidelberg Google Scholar
  23. 23.
    Smirnov, G.V.: Introduction to the Theory of Differential Inclusion. AMS (2002)Google Scholar
  24. 24.
    van Glabbeek R. (2006). On the expressiveness of higher dimensional automata. Theoret. Comput. Sci. 356: 265–290 zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Wisniewski R.: Flow Lines under Perturbations within Section Cones. Ph.D. Thesis, Aalborg University (2005)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Electronic SystemsAalborg UniversityAalborgDenmark
  2. 2.Department of Mathematical SciencesAalborg UniversityAalborgDenmark

Personalised recommendations