Advertisement

Acta Informatica

, Volume 43, Issue 7, pp 477–500 | Cite as

Symbolic models for control systems

  • Paulo Tabuada
Original Article

Abstract

In this paper we provide a bridge between the infinite state models used in control theory to describe the evolution of continuous physical processes and the finite state models used in computer science to describe software. We identify classes of control systems for which it is possible to construct equivalent (bisimilar) finite state models. These constructions are based on finite, but otherwise arbitrary, partitions of the set of inputs or outputs of a control system.

Keywords

Control System Equivalence Relation Hybrid System Symbolic Model Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur R., Courcoubetis C., Halbwachs N., Henzinger T.A., Ho P.H., Nicollin X., Olivero A., Sifakis J. and Yovine S. (1995). Hybrid automata: an algorithmic approach to specification and verification of hybrid systems. Theor. Comput. Sci. 138: 3–34 zbMATHCrossRefGoogle Scholar
  2. 2.
    Alur R. and Dill D.L. (1994). A theory of timed automata. Theor. Comput. Sci. 126(2): 183–235 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arbib M. and Manes E.G. (1974). Machines in a category: an expository introduction. SIAM Rev. 16(2): 163–192 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Antsaklis P.J. and Michel A.N. (1997). Linear Systems. McGraw-Hill, New York Google Scholar
  5. 5.
    Antsaklis P.J., Stiver J.A. and Lemmon M.D. (1993). Hybrid system modeling and autonomous control systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., and Rischel, H. (eds) Hybrid Systems, vol. 736 of Lecture Notes in Computer Science, pp 366–392. Springer, Heidelberg Google Scholar
  6. 6.
    Bicchi, A., Marigo, A., Piccoli, B.: On the rechability of quantized control systems. IEEE Trans. Automat. Control (2002)Google Scholar
  7. 7.
    Brihaye T., Michaux C., Riviére C. and Troestler C. (2004). On o-minimal hybrid systems. In: Alur, R. and Pappas, G.J. (eds) Hybrid Systems: Computation and Control, vol. 2993 of Lecture Notes in Computer Science, pp 219–233. Springer, Heidelberg Google Scholar
  8. 8.
    Broucke M. (1999). A geometric approach to bisimulation and verification of hybrid systems. In: Vaandrager, F.W. and van Schuppen, J.H. (eds) Hybrid Systems: Computation and Control, vol. 1569 of Lecture Notes in Computer Science, pp 61–75. Springer, Heidelberg Google Scholar
  9. 9.
    Caines P.E. and Wei Y.J. (1998). Hierarchical hybrid control systems: a lattice theoretic formulation. IEEE Trans. Automat. Control Special Issue on Hybrid Systems 43(4): 501–508 zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Davoren J.M., Moor T. and Nerode A. (2002). Hybrid control loops, A/D maps and dynamic specifications. In: Tomlin, C. and Greenstreet, M.R. (eds) Hybrid Systems: Computation and Control, vol. 2289 of Lecture Notes in Computer Science, pp. Springer, Heidelberg Google Scholar
  11. 11.
    Fernandez J.-C. (1989–1990). An implementation of an efficient algorithm for bisimulation equivalence. Sci. Comput. Program. 13: 219–236 CrossRefGoogle Scholar
  12. 12.
    Goguen J.A. (1973). Realization is universal. Math. Syst. Theory 6(4): 359–374 zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Henzinger T.A., Kopke P.W., Puri A. and Varaiya P. (1998). What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57: 94–124 zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Henszinger, T.A., Majumdar, R.: Symbolic model checking for rectangular hybrid systems. In: Graf, S. (ed.) TACAS 2000: Tools and algorithms for the construction and analysis of systems, Lecture Notes in Computer Science, New-York Springer, Heidelberg (2000)Google Scholar
  15. 15.
    Tomlin, C., Greenstreet, M.R. (eds.) Hybrid Systems: Computation and Control 2002, vol. 2289 of Lecture Notes in Computer Science. Springer, Stanford (2002)Google Scholar
  16. 16.
    Maler, O., Pnueli, A. (eds.): Hybrid Systems: Computation and Control 2003, vol. 2623 of Lecture Notes in Computer Science. Springer, Prague (2003)Google Scholar
  17. 17.
    Alur, R., Pappas, G.J. (eds.): Hybrid Systems: Computation and Control 2004, vol. 2993 of Lecture Notes in Computer Science. Springer, Philadelphia (2004)Google Scholar
  18. 18.
    Morari, M., Thiele, L. (eds.): Hybrid Systems: Computation and Control 2005, vol. 3414 of Lecture Notes in Computer Science. Springer, Zurich (2005)Google Scholar
  19. 19.
    Hespanha, J.P., Tiwari, A. (eds.): Hybrid Systems: Computation and Control 2006, volume 3927 of Lecture Notes in Computer Science. Springer-Verlag, Santa Barbara, CA, USA (2006)Google Scholar
  20. 20.
    Haghverdi E., Tabuada P. and Pappas G.J. (2005). Bisimulation relations for dynamical, control and hybrid systems. Theor. Comput. Sci. 34(2–3): 387–392 MathSciNetGoogle Scholar
  21. 21.
    Koutsoukos X. and Antsaklis P. (2003). Safety and reachability of piecewise linear hybrid dynamical systems based on discrete abstractions. J. Discret. Event Dyn. Syst. Theory Appl. 13(3): 203–243 zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Mac Lane S. (1971). Categories for the Working Mathematician. Springer, Heidelberg zbMATHGoogle Scholar
  23. 23.
    Lafferriere G., Pappas G.J. and Sastry S. (2000). O-minimal hybrid systems. Math. Control, Signals Syst. 13(1): 1–21 zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lunze J. (1994). Qualitative modelling of linear dynamical systems with quantized state measurements. Automatica 30: 417–431 zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Milner R. (1989). Communication and Concurrency. Prentice Hall, Englewood zbMATHGoogle Scholar
  26. 26.
    Moor T., Raisch J. and O’Young S.D. (2002). Discrete supervisory control of hybrid systems based on l-complete approximations. J. Discrete Event Dyn. Syst. 12(1): 83–107 zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Nerode A. and Kohn W. (1993). Models for hybrid systems: automata, topologies, controllability, observability. In: Grossman, R.L., Nerode, A., Ravn, A.P. and Rischel, H. (eds) Hybrid Systems, vol. 736 of Lecture Notes in Computer Science, pp 317–356. Springer, Heidelberg Google Scholar
  28. 28.
    Pappas, G.J.: Bisimilar linear systems. Automatica, 39(12), 2035–2047, December (2003)Google Scholar
  29. 29.
    Park, D.M.R.: Concurrency and automata on infinite sequences. vol. 104 of Lecture Notes in Computer Science, pp. 167–183 (1981)Google Scholar
  30. 30.
    Pancanti S., Leonardi L., Pallottino L. and Bicchi A. (2002). Optimal control of quantized linear systems. In: Tomlin, C. and Greenstreet, M.R. (eds) Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, pp 351–363. Springer, Heidelberg Google Scholar
  31. 31.
    Paige R. and Tarjan R. (1987). Three partition refinement algorithms. SIAM J. Comput. 16(6): 973–989 zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Puri, A., Varaiya, P.: Decidability of hybrid systems with rectangular inclusions. In: Computer Aided Verification, pp. 95–104 (1994)Google Scholar
  33. 33.
    Pola, G., van der Schaft, A.J., di Benedetto, M.D.: Bisimulation theory for switching linear systems. In: Proceedings of the 43rd IEEE Conference on Decision and Control, pp. 1406–1411, Paradise Island, Bahamas (2004)Google Scholar
  34. 34.
    Polderman J.W. and Willems J.C. (1997). Introduction to Mathematical Systems Theory: A Behavioral Approach. Springer, New York zbMATHGoogle Scholar
  35. 35.
    Raisch J. and O’Young S.D. (1998). Discrete approximations and supervisory control of continuous systems. IEEE Trans. Automat. Control: Special Issue on Hybrid Systems 43(4): 569–573 zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Stiver J.A., Koutsoukos X.D. and Antsaklis P.J. (2001). An invariant based approach to the design of hybrid control systems. Int. J. Robust Nonlinear Control 11(5): 453–478 zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Stursberg, O., Kowalewski, S., Hoffmann, I., Preussig, J.: Comparing timed and hybrid automata as approximations of continuous systems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S. (eds.) Hybrid Systems IV, vol. 1273 of Lecture Notes in Computer Science, pp. 361–377. Springer-Verlag, (1997)Google Scholar
  38. 38.
    Sontag E.D. (1998). Mathematical Control Theory, vol. 6 of Texts in Applied Mathematics, 2nd edn . Springer, New-York Google Scholar
  39. 39.
    Tarraf, D.C., Megretski, A., Dahleh, M.A.: Finite automata approximations with error bounds for systems with quantized actuation and measurement: a case study. In: Proceedings of the 43rd IEEE conference on decision and control, pp. 1436–1441, Paradise Island, Bahamas (2004)Google Scholar
  40. 40.
    Tabuada, P., Pappas, G.J.: Finite bisimulations of controllable linear systems. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Hawaii (2003)Google Scholar
  41. 41.
    Tabuada, P., Pappas, G.J.: Model checking LTL over controllable linear systems is decidable. In: Maler, O., Pnueli, A. (eds.) Hybrid Systems: Computation and Control, vol. 2623 of Lecture Notes in Computer Science. Springer, (2003)Google Scholar
  42. 42.
    Tabuada P. and Pappas G.J. (2004). Bisimilar control affine systems. Syst. Control Lett. 52(1): 49–58 zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Tabuada P. and Pappas G.J. (2006). Linear Time Logic control of discrete-time linear systems. IEEE Trans. Automat. Control 51(12): 1862–1877 CrossRefMathSciNetGoogle Scholar
  44. 44.
    van der Schaft A.J. (2004). Equivalence of dynamical systems by bisimulation. IEEE Trans. Automat. Control 49(12): 2160–2172 CrossRefMathSciNetGoogle Scholar
  45. 45.
    Vidal, R., Schaffert, S., Shakernia, O., Lygeros, J., Sastry, S.: Decidable and semi-decidable controller synthesis for classes of discrete time hybrid systems. In: Proceedings of the 40th IEEE conference on decision and control, pp. 1243–1248, Orlando (2001)Google Scholar
  46. 46.
    Winskel G. and Nielsen M. (1994). Models for concurrency. In: Abramsky, Gabbay (eds) Handbook of Logic and Foundations of Theoretical Computer Science, volume 4, pp. Oxford University Press, London Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations