Skip to main content
Log in

An exact subexponential-time lattice algorithm for Asian options

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

Asian options are popular financial derivative securities. Unfortunately, no exact pricing formulas exist for their price under continuous-time models. Asian options can also be priced on the lattice, which is a discretized version of the continuous- time model. But only exponential-time algorithms exist if the options are priced on the lattice without approximations. Although efficient approximation methods are available, they lack accuracy guarantees in general. This paper proposes a novel lattice structure for pricing Asian options. The resulting pricing algorithm is exact (i.e., without approximations), converges to the value under the continuous-time model, and runs in subexponential time. This is the first exact, convergent lattice algorithm to break the long-standing exponential-time barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate J. and Whitt W. (1995). Numerical inversion of Laplace transforms of probability distributions. ORSA J. Comput. 7: 36–43

    MATH  Google Scholar 

  2. Aingworth, D., Motwani, R., Oldham, J.D.: Accurate approximations for Asian options. In: Proceedings of 11th Annual ACM-SIAM Symposium on Discrete Algorithms (2000)

  3. Barraquand J. and Pudet T. (1996). Pricing of American path-dependent contingent claims. Math. Finance 6: 17–51

    Article  MATH  MathSciNet  Google Scholar 

  4. Black F. and Scholes M. (1973). The pricing of options and corporate liabilities. J. Polit. Econ. 81: 637–659

    Article  Google Scholar 

  5. Boyle P.P., Broadie M. and Glasserman P. (1997). Monte Carlo methods for security pricing. J. Econ. Dyn. Control 21: 1267–1321

    Article  MATH  MathSciNet  Google Scholar 

  6. Broadie M. and Glasserman P. (1996). Estimating security price derivatives using simulation. Manag. Sci. 42: 269–285

    MATH  Google Scholar 

  7. Broadie M., Glasserman P. and Kou S. (1999). Connecting discrete and continuous path-dependent options. Finance Stoch 3: 55–82

    Article  MATH  MathSciNet  Google Scholar 

  8. Chalasani P., Jha S., Egriboyun F. and Varikooty A. (1999). A refined binomial lattice for pricing American Asian options. Rev. Deriv. Res. 3: 85–105

    Article  Google Scholar 

  9. Chalasani P., Jha S. and Saias I. (1999). Approximate option pricing. Algorithmica 25: 2–21

    Article  MATH  MathSciNet  Google Scholar 

  10. Cox J., Ross S. and Rubinstein M. (1979). Option pricing: a simplified approach. J. Financ. Econ. 7: 229–264

    Article  MATH  Google Scholar 

  11. Dai T.-S., Huang G.-S. and Lyuu Y.-D. (2005). An efficient convergent lattice algorithm for European Asian options. Appl. Math. Comput. 169: 1458–1471

    Article  MATH  MathSciNet  Google Scholar 

  12. Dai T.-S. and Lyuu Y.-D. (2002). Efficient, exact algorithms for Asian options with multiresolution lattices. Rev. Deriv. Res. 5: 181–203

    Article  MATH  Google Scholar 

  13. Duffie, D.: Dynamic Asset Pricing Theory, 2nd edn. Princeton University Press, Princeton (1996)

  14. Forsyth P.A., Vetzal K.R. and Zvan R. (2002). Convergence of numerical methods for valuing path- dependent options using interpolation. Rev. Deriv. Res. 5: 273–314

    Article  MATH  Google Scholar 

  15. Fu M.C., Dilip D.B. and Wang T. (1998/9). Pricing continuous Asian options: a comparison of Monte Carlo and Laplace transform inversion methods. J. Comput. Finance 2: 49–74

    Google Scholar 

  16. Geman H. and Eydeland A. (1995). Domino effect. Risk 8: 65–67

    Google Scholar 

  17. Geman H. and Yor M. (1993). Bessel processes, Asian options and perpetuities. Math. Finance 3: 349–375

    Article  MATH  Google Scholar 

  18. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)

  19. Harrison J.M. and Pliska S.R. (1981). Martingales and stochastic integrals in the theory of continuous trading. Stoch. Process. Appl. 11: 215–260

    Article  MATH  MathSciNet  Google Scholar 

  20. Hull, J.: Options, Futures, and Other Derivatives, 4th edn. Prentice-Hall, Englewood Cliffs (2000)

  21. Hull, J., White, A.: Efficient procedures for valuing European and American path-dependent options. J. Deriv. 1, 21–31 (1993)

    Google Scholar 

  22. Ingersoll, J.E.: Theory of Financial Decision Making. Rowman & Littlefield, Savage (1987)

  23. Kemna A.G.Z. and Vorst A.C.F. (1990). A pricing method based on average asset values. J. Bank. Finance 14: 113–129

    Article  Google Scholar 

  24. Klassen T.R. (2001). Simple, fast and flexible pricing of Asian options. J. Comput. Finance 4: 89–124

    Google Scholar 

  25. Levy E. (1992). Pricing European average rate currency options. J. Int. Money Finance 11: 474–491

    Article  Google Scholar 

  26. Longstaff F.A. and Schwartz E.S. (2001). Valuing American options by simulation: a simple least-squares approach. Rev. Financ. Stud. 14: 113–147

    Article  Google Scholar 

  27. Lyuu, Y.-D.: Financial Engineering and Computation: Principles, Mathematics, Algorithms. Cambridge University Press, Cambridge (2002)

  28. Merton, R.C.: Continuous-Time Finance (revised edn). Blackwell, Cambridge (1994)

  29. Milevsky M.A. and Posner S.E. (1998). Asian options, the sum of lognormals and the reciprocal gamma distribution. J. Financ. Quant. Anal. 33: 409–422

    Article  Google Scholar 

  30. Ohta, K., Sadakane, K., Shioura, A., Tokuyama, T.: A fast, accurate and simple method for pricing European-Asian and saving-Asian options. In: Proceedings of the 10th Annual European Symposium on Algorithms (2002)

  31. Reiner E. and Rubinstein M. (1991). Breaking down the barriers. Risk 4: 28–35

    Google Scholar 

  32. Ritchken P., Sankarasubramanian L. and Vijh A.M. (1993). The valuation of path dependent contracts on the average. Manage. Sci. 39: 1202–1213

    Article  MATH  Google Scholar 

  33. Rogers L.C.G. and Shi Z. (1995). The value of an Asian option. J. Appl. Probab. 32: 1077–1088

    Article  MATH  MathSciNet  Google Scholar 

  34. Shaw, W.T.: Modeling Financial Derivatives with Mathematica. Cambridge University Press, Cambridge (1998)

  35. Turnbull S.M. and Wakeman L.M. (1991). A quick algorithm for pricing European average options. Financ. Quant. Anal. 26: 377–389

    Article  Google Scholar 

  36. Večeř J. (2001). A new PDE approach for pricing arithmetic average Asian options. J. Comput. Finance 4: 105–113

    Google Scholar 

  37. Večeř J. (2002). Unified Asian pricing. Risk 15: 113–116

    Google Scholar 

  38. Zhang J.E. (2001). A semi-analytical method for pricing and hedging continuously sampled arithmetic average rate options. J. Comput. Finance 5: 59–79

    Google Scholar 

  39. Zhang J.E. (2003). Pricing continuously sampled Asian options with perturbation method. J. Futures Mark. 23: 535–560

    Article  Google Scholar 

  40. Zvan R. and Vetzal K. (1999). Discrete Asian barrier options. J. Comput. Finance 3: 41–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuh-Dauh Lyuu.

Additional information

An early version of this paper appeared in the Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, 2004.

T.-S. Dai was supported in part by NSC grant 94-2213-E-033-024.

Y.-D. Lyuu was supported in part by NSC grant 94-2213-E-002-088.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, TS., Lyuu, YD. An exact subexponential-time lattice algorithm for Asian options. Acta Informatica 44, 23–39 (2007). https://doi.org/10.1007/s00236-006-0033-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-006-0033-9

Keywords

Navigation