Acta Informatica

, Volume 43, Issue 4, pp 243–264 | Cite as

Distances in random digital search trees

Original Article

Abstract

Distances between nodes in random trees is a popular topic, and several classes of trees have recently been investigated. We look into this matter in digital search trees. By analytic techniques, such as the Mellin Transform and poissonization, we describe a program to determine the moments of these distances. The program is illustrated on the mean and variance. One encounters delayed Mellin transform equations, which we solve by inspection. In addition to various asymptotics, we give an exact expression for the mean and for the variance in the unbiased case. Interestingly, the unbiased case gives a bounded variance, whereas the biased case gives a variance growing with the number of keys. It is therefore possible in the biased case to show that an appropriately normalized version of the distance converges to a limit. The complexity of moment calculation increases substantially with each higher moment; it is prudent to seek a shortcut to the limit via a method that avoids the computation of all moments. Toward this end, we utilize the contraction method to show that in biased digital search trees the distribution of a suitably normalized version of the distances approaches a limit that is the fixed-point solution of a distributional equation (distances being measured in the Wasserstein metric space). An explicit solution to the fixed-point equation is readily demonstrated to be Gaussian.

Keywords

Random trees Recurrence Mellin transform Poissonization Fixed point Contraction method 

AMS Subject Classifications

Primary: 05C05 Primary: 60C05 secondary: 60F05 secondary: 68P05 secondary: 68P10 secondary: 68P20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguech R., Lasmar N., Mahmoud H. (2006) Limit distribution of distances in biased random tries. J. Appl. Probab. 43, 1–14MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chern H., Hwang H., Tsai T. (2002) An asymptotic theory for Cauchy-Euler differential equations with applications to the analysis of algorithms. J. Algorithms 44, 177–225MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Christophi C., Mahmoud H. (2005) The oscillatory distribution of distances in random tries. Ann. Appl. Probab. 15, 1536–1564MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Coffman E., Eve J.: File structures using hashing functions. Commun. ACM 13, 427–432, and 436 (1970)Google Scholar
  5. 5.
    Devroye L., Neininger R. (2004) Distances and finger search in random binary search trees. SIAM J. Comput. 33, 647–658MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Flajolet P., Sedgewick R. (1986) Digital search trees revisited. SIAM J. Comput. 15, 748–767MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Flajolet P., Gourdon X., Dumas P. (1995) Mellin transform and asymptotic harmonic sums. Theor. Comput. Sci. 144, 3–58MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Gutman I., Polansky O. (1986) Mathematical Concepts in Organic Chemistry. Springer, Berlin Heidelberg New YorkMATHGoogle Scholar
  9. 9.
    Jacquet P.: Contribution de l’Analyse d’Algorithmes a l’Evaluation de Protocoles de Communication. Thèse Université de Paris Sud-Orsay, Paris (1989)Google Scholar
  10. 10.
    Jacquet P., Szpankowski W. (1998) Analytical depoissonization and its applications. Theor. Comput. Sci. 201, 1–62MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Kirschenhofer P., Prodinger H. (1988) Further results on digital search trees. Theor. Comput. Sci. 58, 143–154MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Kirschenhofer P., Prodinger H., Szpankowski W. (1994) Digital search trees again revisited: the internal path length perspective. SIAM J. Comput. 23, 598–616MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Knuth D. The Art of Computer Programming, Vol. 3: Sorting and Searching, 2nd ed. Addison-Wesley, Reading, MA (1998)Google Scholar
  14. 14.
    Louchard G. (1987) Exact and asymptotic distributions in digital and binary search trees. RAIRO: Theor. Informat. Appl. 21, 479–495MATHMathSciNetGoogle Scholar
  15. 15.
    Louchard G., Szpankowski W. (1995) Average profile and limiting distribution for a phrase size in the Lempel-Ziv parsing algorithm. IEEE Trans. Informat. Theory 41, 478–488MATHCrossRefGoogle Scholar
  16. 16.
    Louchard G., Szpankowski W., Tang J. (1999) Average profile of the generalized digital-search tree and the generalized Lempel-Ziv algorithms. SIAM J. Comput. 28, 935–954MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mahmoud H. (1992) Evolution of Random Search Trees. Wiley, New YorkMATHGoogle Scholar
  18. 18.
    Mahmoud M., Neininger R. (2003) Distribution of distances in random binary search trees. Ann. Appl. Probab. 13, 253–276MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Mathys P., Flajolet P. (1985) Q-ary collision resolution algorithms in random-access systems with free and blocked channel access. IEEE Trans. Informat. Theory 31, 217–243MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Neininger R. (2001) On a multivariate contraction method for random recursive structures with applications to Quicksort. Random Struct. Algorithms 19, 498–524MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Neininger R. (2002) The Wiener index of random trees. Combinat. Probab. Comput. 11, 587–597MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Neininger R., Rüschendorf L. (2004) A general limit theorem for recursive algorithms and combinatorial structures. Ann. Appl. Probab. 14, 378–418MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Panholzer A., Prodinger H. (2004) Spanning tree size in random binary search trees. Ann. Appl. Probab. 14, 718–733MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Pittel B. (1985) Asymptotical growth of a class of random trees. Ann. Probab. 13, 414–427MATHMathSciNetGoogle Scholar
  25. 25.
    Rachev S., Rüschendorf L. (1995) Probability metrics and recursive algorithms. Adv. Appl. Probab. 27, 770–799MATHCrossRefGoogle Scholar
  26. 26.
    Rösler U. (1991) A limit theorem for “Quicksort”. RAIRO Inform. Théor. Appl. 25, 85–100MATHMathSciNetGoogle Scholar
  27. 27.
    Rösler U. (2001) On the analysis of stochastic divide and conquer algorithms. Algorithmica, 29, 238–261MATHMathSciNetGoogle Scholar
  28. 28.
    Rösler U., Rüschendorf L. (2001) The contraction method for recursive algorithms. Algorithmica 29, 3–33MATHMathSciNetGoogle Scholar
  29. 29.
    Schachinger W.: Beiträge zur Analyse von Datenstrukturen zur Digitalen Suche. Dissertation Technische Universität Wien, Vienna (1993)Google Scholar
  30. 30.
    Szpankowski W. (1991) A characterization of digital search trees from the successful search viewpoint. Theor. Comput. Sci. 85, 117–134MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Szpankowski W. (2001) Average Case Analysis of Algorithms on Sequences. Wiley, New YorkMATHGoogle Scholar
  32. 32.
    Trinajstić N. (1992) Chemical Graph Theory. CRC Press, Boca Raton FLGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Département de mathématiquesFaculté des Sciences de MonastirMonastirTunisia
  2. 2.Département de mathématiquesInstitut préparatoire aux études d’ingénieurs de Tunis, IPEITTunisTunisia
  3. 3.Department of StatisticsThe George Washington UniversityWashingtonUSA

Personalised recommendations