Skip to main content

Advertisement

Log in

From images to insights: a neuroradiologist’s practical guide on white matter fiber tract anatomy and DTI patterns for pre-surgical planning

  • Continuing Education
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Diffusion tensor imaging (DTI) is a valuable non-invasive imaging modality for mapping white matter tracts and assessing microstructural integrity, and can be used as a “biomarker” in diagnosis, differentiation, and therapeutic monitoring. Although it has gained clinical importance as a marker of neuropathology, limitations in its interpretation underscore the need for caution.

Methods

This review provides an overview of the principles and clinical applicability of DTI. We focus on major white matter fiber bundles, detailing their normal anatomy and pathological DTI patterns, with emphasis on tracts routinely requested in our neurosurgical department in the preoperative context (uncinate fasciculus, arcuate fasciculus, pyramidal pathway, optic radiation, and dentatorubrothalamic tract).

Results

We guide neuroradiologists and neurosurgeons in defining volumes of interest for mapping individual tracts and demonstrating their 3D reconstructions. The intricate trajectories of white matter tracts pose a challenge for accurate fiber orientation recording, with each bundle exhibiting specific characteristics. Tracts adjacent to brain lesions are categorized as displaced, edematous, infiltrated, or disrupted, illustrated with clinical cases of brain neoplasms. To improve structured reporting, we propose a checklist of topics for inclusion in imaging evaluations and MRI reports.

Conclusion

DTI is emerging as a powerful tool for assessing microstructural changes in brain disorders, despite some challenges in standardization and interpretation. This review serves an educational purpose by providing guidance for fiber monitoring and interpretation of pathological patterns observed in clinical cases, highlighting the importance and potential pitfalls of DTI in neuroradiology and surgical planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ADC:

Apparent Diffusion Coefficient

dMRI:

Diffusion Magnetic Resonance Imaging

DTI:

Diffusion Tensor Imaging

DWI:

Diffusion-Weighted Imaging

FA:

Fractional Anisotropy

IDH:

Isocitrate Dehydrogenase

MD:

Mean Diffusivity

MRI:

Magnetic Resonance Imaging

ROI/VOI:

Region/Volume-Of-Interest

WM:

White Matter

References

  1. Gage NM, Baars B (2018) The Brain. In: Gage NM, Baars B (eds) Fundamentals of Cognitive Neuroscience: A Beginner’s Guide, 2nd edn. The Netherlands and Boston, Massachusetts, Amsterdam, pp 17–52

    Chapter  Google Scholar 

  2. Shimony JS, McKinstry RC, Akbubudak E et al (1999) Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology 212:770–784. https://doi.org/10.1148/radiology.212.3.r99au51770

    Article  CAS  PubMed  Google Scholar 

  3. Lerner A, Mogensen MA, Kim KPE et al (2014) Clinical Applications of Diffusion Tensor Imaging. World Neurosurg 82:96–109. https://doi.org/10.1016/j.wneu.2013.07.083

    Article  PubMed  Google Scholar 

  4. Jellison BJ, Field AS, Medow J et al (2004) Diffusion Tensor Imaging of Cerebral White Matter: A Pictorial Review of Physics, Fiber Tract Anatomy, and Tumor Imaging Patterns. AJNR Am J Neuroradiol 25:356–369

    PubMed  PubMed Central  Google Scholar 

  5. Brown R (1828) XXVII. A brief account of microscopical observations made in the months of June, July, and August, 1827 on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philosophical Magazine Series 2:161–173

    Article  Google Scholar 

  6. Mukherjee P, Berman JI, Chung SW et al (2008) Diffusion tensor MR imaging and fiber tractography: Theoretic underpinnings. AJNR Am J Neuroradiol 29:632–641. https://doi.org/10.3174/ajnr.A1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alexander AL, Lee JE, Lazar M et al (2007) Diffusion Tensor Imaging of the Brain. Neurotherapeutics 4:316–329. https://doi.org/10.1016/j.nurt.2007.05.011

    Article  PubMed  PubMed Central  Google Scholar 

  8. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system - A technical review. NMR Biomed 15:435–455. https://doi.org/10.1002/nbm.782

    Article  PubMed  Google Scholar 

  9. Neil JJ, Shiran SI, McKinstry RC et al (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209:57–66. https://doi.org/10.1148/radiology.209.1.9769812

    Article  CAS  PubMed  Google Scholar 

  10. Chenevert TL, Brunberg JA, Pipe JG (1990) Anisotropic diffusion in human white matter: Demonstration with MR techniques in vivo. Radiology 177:401–405. https://doi.org/10.1148/radiology.177.2.2217776

    Article  CAS  PubMed  Google Scholar 

  11. Kingsley PB (2006) Introduction to diffusion tensor imaging mathematics: Part I. Tensors, rotations, and eigenvectors. Concepts in Magnetic Resonance Part A 28:101–122. https://doi.org/10.1002/cmr.a.20048

    Article  Google Scholar 

  12. Green HAL, Peña A, Price CJ et al (2002) Increased anisotropy in acute stroke: A possible explanation. Stroke 33:1517–1521. https://doi.org/10.1161/01.STR.0000016973.80180.7B

    Article  PubMed  Google Scholar 

  13. Price SJ, Peña A, Burnet N et al (2004) Tissue signature characterisation of diffusion tensor abnormalities in cerebral gliomas. Eur Radiol 14:1909–1917. https://doi.org/10.1007/s00330-004-2381-6

    Article  PubMed  Google Scholar 

  14. Zhang S, Arfanakis K (2014) White Matter Segmentation Based on a Skeletonized Atlas: Effects on Diffusion Tensor Imaging Studies of Regions of Interest. J Magn Reson Imaging 40:1189–1198. https://doi.org/10.1002/jmri.24445

    Article  PubMed  Google Scholar 

  15. Figley CR, Uddin MN, Wong K et al (2022) Potential Pitfalls of Using Fractional Anisotropy, Axial Diffusivity, and Radial Diffusivity as Biomarkers of Cerebral White Matter Microstructure. Front Neurosci 15:1–7. https://doi.org/10.3389/fnins.2021.799576

    Article  Google Scholar 

  16. Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI. Neuroimage 73:239–254. https://doi.org/10.1016/j.neuroimage.2012.06.081

    Article  PubMed  Google Scholar 

  17. Tournier JD, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65:1532–1556. https://doi.org/10.1002/mrm.22924

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jelescu IO, Budde MD (2017) Design and Validation of Diffusion MRI Models of White Matter. Front Phys 5:1–18. https://doi.org/10.3389/fphy.2017.00061

    Article  Google Scholar 

  19. Ebisu T, Naruse S, Horikawa Y et al (1993) Discrimination between different types of white matter edema with diffusion-weighted MR imaging. J Magn Reson Imaging 3:863–868. https://doi.org/10.1002/jmri.1880030612

    Article  CAS  PubMed  Google Scholar 

  20. Kim YJ, Chang KH, Song IC et al (1998) Brain Abscess and Necrotic or Cystic Brain Tumor: Discrimination with Signal Intensity on Diffusion-Weighted MR Imaging. AJR 171:1487–1490. https://doi.org/10.2214/ajr.171.6.9843275

    Article  CAS  PubMed  Google Scholar 

  21. Tsuchiya K, Osawa A, Katase S et al (2003) Diffusion-weighted MRI of subdural and epidural empyemas. Neuroradiology 45:220–223. https://doi.org/10.1007/s00234-003-0949-5

    Article  CAS  PubMed  Google Scholar 

  22. Pezzullo JA, Tung GA (2003) Diffusion-Weighted MR Imaging of Pyogenic Ventriculitis. AJR 180:71–75. https://doi.org/10.2214/ajr.180.1.1800071

    Article  PubMed  Google Scholar 

  23. Na DL, Suh CK, Choi SH et al (1999) Diffusion-weighted magnetic resonance imaging in probable Creutzfeldt-Jakob disease: a clinical-anatomic correlation. AMA 56:951–957. https://doi.org/10.1001/archneur.56.8.951

    Article  CAS  Google Scholar 

  24. Arfanakis K, Haughton VM, Carew JD et al (2002) Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 23:794–802

    PubMed  PubMed Central  Google Scholar 

  25. Tsuruda JS, Chew WM, Moseley ME et al (1990) Diffusion-weighted MR imaging of the brain: Value of differentiating between extraaxial cysts and epidermoid tumors. AJR 155:1059–1065. https://doi.org/10.2214/ajr.155.5.2120936

    Article  CAS  PubMed  Google Scholar 

  26. Schwartz KM, Lane JI, Bolster BD et al (2011) The utility of diffusion-weighted imaging for cholesteatoma evaluation. AJNR Am J Neuroradiol 32:430–436. https://doi.org/10.3174/ajnr.A2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Erdem E, Zimmerman RA, Haselgrove JC et al (2011) Diffusion-weighted imaging and fluid attenuated inversion recovery imaging in the evaluation of primitive neuroectodermal tumors. Neuroradiology 43:927–933. https://doi.org/10.1007/s002340100603

    Article  Google Scholar 

  28. Sener RN (2004) Diffusion magnetic resonance imaging patterns in metabolic and toxic brain disorders. Acta radiol 45:561–570. https://doi.org/10.1080/02841850410006128

    Article  CAS  PubMed  Google Scholar 

  29. Nusbaum AO, Tang CY, Buchsbaum MS et al (2001) Regional and global changes in cerebral diffusion with normal aging. AJNR Am J Neuroradiol 22:136–142

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Alexander DC, Dyrby TB, Nilsson M et al (2019) Imaging brain microstructure with diffusion MRI: Practicality and applications. NMR Biomed 32:1–26. https://doi.org/10.1002/nbm.3841

    Article  Google Scholar 

  31. Esrael SMAM, Hamed AMM, Khedr EM et al (2021) Application of diffusion tensor imaging in Alzheimer’s disease: Quantification of white matter microstructural changes. Egypt J Radiol Nucl Med 52:1–8. https://doi.org/10.1186/s43055-021-00460-x

    Article  Google Scholar 

  32. Nestor PG, Kubicki M, Gurrera R et al (2004) Neuropsychological Correlates of Diffusion Tensor Imaging in Schizophrenia. Neuropsychology 18:629–637. https://doi.org/10.1037/0894-4105.18.4.629

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cercignani M, Gandini Wheeler-Kingshott C (2019) From micro- to macro- structures in multiple sclerosis: What is the added value of diffusion imaging. NMR Biomed 32:1–10. https://doi.org/10.1002/nbm.3888

    Article  Google Scholar 

  34. Chianca V, Albano D, Messina C et al (2017) Diffusion tensor imaging in the musculoskeletal and peripheral nerve systems: From experimental to clinical applications. Eur Radiol Exp 1:1–8. https://doi.org/10.1186/s41747-017-0018-1

    Article  Google Scholar 

  35. Jeurissen B, Descoteaux M, Mori S et al (2019) Diffusion MRI fiber tractography of the brain. NMR Biomed 32:1–22. https://doi.org/10.1002/nbm.3785

    Article  Google Scholar 

  36. Beppu T (2014) The role of MR imaging in assessment of brain damage from carbon monoxide poisoning: A review of the literature. AJNR Am J Neuroradiol 35:625–631. https://doi.org/10.3174/ajnr.A3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brissaud O, Amirault M, Villega F et al (2010) Efficiency of fractional anisotropy and apparent diffusion coefficient on diffusion tensor imaging in prognosis of neonates with hypoxic-ischemic encephalopathy: A methodologic prospective pilot study. AJNR Am J Neuroradiol 31:282–287. https://doi.org/10.3174/ajnr.A1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tuch DS, Reese TG, Wiegell MR et al (2003) Diffusion MRI of Complex Neural Architecture. Neuron 40:885–895. https://doi.org/10.1016/S0896-6273(03)00758-X

    Article  CAS  PubMed  Google Scholar 

  39. Landers MJF, Brouwers HB, Kortman GJ et al (2023) Oligodendrogliomas tend to infiltrate the frontal aslant tract, whereas astrocytomas tend to displace it. Neuroradiology 65:1127–1131. https://doi.org/10.1007/s00234-023-03153-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu S, Ahn D, Johnson G et al (2003) Peritumoral Diffusion Tensor Imaging of High-Grade Gliomas and Metastatic Brain Tumors. AJNR Am J Neuroradiol 24:937–941

    PubMed  PubMed Central  Google Scholar 

  41. Assaf Y, Johansen-Berg H, Thiebaut de Schotten M (2019) The role of diffusion MRI in neuroscience. NMR Biomed 32:1–16. https://doi.org/10.1002/nbm.3762

    Article  Google Scholar 

  42. Itagiba VGA, Borges R, da Cruz JLCH et al (2010) Use of diffusion tensor magnetic resonance imaging in the assessment of patterns of white matter involvement in patients with brain tumors: Is it useful in the differential diagnosis? Radiol Bras 43:362–368

    Article  Google Scholar 

  43. Rhoton AL Jr (2002) The cerebrum. Neurosurgery 51:S1-51. https://doi.org/10.1227/01.NEU.0000028086.48597.4F

    Article  PubMed  Google Scholar 

  44. Hakulinen U, Brander A, Ilvesmaki T et al (2021) Reliability of the freehand region-of-interest method in quantitative cerebral diffusion tensor imaging. BMC Med Imaging 21:1–17. https://doi.org/10.1186/s12880-021-00663-8

    Article  Google Scholar 

  45. Peltier J, Verclytte S, Delmaire C et al (2010) Microsurgical anatomy of the temporal stem: Clinical relevance and correlations with diffusion tensor imaging fiber tracking. J Neurosurg 112:1033–1038. https://doi.org/10.3171/2009.6.JNS08132

    Article  PubMed  Google Scholar 

  46. Rodrigo S, Oppenheim C, Chassoux F et al (2007) Uncinate fasciculus fiber tracking in mesial temporal lobe epilepsy. Initial findings Eur Radiol 17:1663–1668. https://doi.org/10.1007/s00330-006-0558-x

    Article  CAS  PubMed  Google Scholar 

  47. Bernal B, Ardila A (2009) The role of the arcuate fasciculus in conduction aphasia. Brain 132:2309–2316. https://doi.org/10.1093/brain/awp206

    Article  PubMed  Google Scholar 

  48. Fernández-Miranda JC, Rhoton AL, Álvarez-Linera J et al (2008) Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery 62:989–1028. https://doi.org/10.1227/01.NEU.0000297076.98175.67

    Article  PubMed  Google Scholar 

  49. Bernal B, Altman N (2010) The connectivity of the superior longitudinal fasciculus: A tractography DTI study. Magn Reson Imaging 28:217–225. https://doi.org/10.1016/j.mri.2009.07.008

    Article  PubMed  Google Scholar 

  50. Wu D, Zhang M, Geng J et al (2022) Noninvasive Prediction of Language Lateralization Through Arcuate Fasciculus Tractography in Patients With Low-Grade Gliomas: Correlation With The Wada Test. Front Oncol 12:1–9. https://doi.org/10.3389/fonc.2022.936228

    Article  CAS  Google Scholar 

  51. Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132. https://doi.org/10.1016/j.cortex.2008.05.004

    Article  PubMed  Google Scholar 

Download references

Funding

Funding information is not applicable / No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

IF and DJP conceptualize the article. IF performed the literature search. IF and DJP performed the data analysis. IF wrote the first draft. All authors critically revised the manuscript.

Corresponding author

Correspondence to Inês S. Freire.

Ethics declarations

Conflict of Interest

We declare that we have no conflict of interest.

Competing interests

Nothing to declare.

Ethics approval

In line with the above, the study was exempt from ethical approval.

Informed consent

This report does not contain any personal information that could lead to the identification of the patient(s). In addition, this is an observational study, so the patients’ informed consent was waived. All the images used are anonymized and do not allow the individuals to be identified.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freire, I.S., Lopes, T.S., Afonso, S.G. et al. From images to insights: a neuroradiologist’s practical guide on white matter fiber tract anatomy and DTI patterns for pre-surgical planning. Neuroradiology (2024). https://doi.org/10.1007/s00234-024-03362-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00234-024-03362-7

Keywords

Navigation