Skip to main content
Log in

Structural connectivity as a predictive factor for responsiveness to levetiracetam treatment in epilepsy

  • Advanced Neuroimaging
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether structural connectivity or glymphatic system function is a potential predictive factor for levetiracetam (LEV) response in patients with newly diagnosed epilepsy.

Methods

We enrolled patients with newly diagnosed epilepsy who were administered LEV as initial monotherapy and underwent diffusion tensor imaging (DTI) at diagnosis. We categorized the patients into drug response. We used graph theory to calculate the network measures for structural connectivity based on the DTI scans in patients with epilepsy. Additionally, we evaluated glymphatic system function by calculating the DTI analysis along the perivascular space (DTI-ALPS) index based on DTI scans.

Results

We enrolled 84 patients with epilepsy. The clinical factors and DTI-ALPS index did not differ between the groups. However, some of the structural connectivity measures significantly differ between the groups. The poor responders exhibited a higher mean clustering coefficient, global efficiency, and small-worldness index than the good responders (p = 0.003, p = 0.048, and p = 0.038, respectively). In the receiver operating characteristic curve analysis, the mean clustering coefficient exhibited the highest performance in predicting the responsiveness to LEV (area under the curve of 0.677). In the multiple logistic regression analysis, the mean clustering coefficient of the structural connectivity measures was the only significant predictor of LEV response (p = 0.014). Furthermore, in the survival analysis, the mean clustering coefficient was the only significant predictor of LEV response (p = 0.026).

Conclusion

We demonstrated that structural connectivity is a potential predictive factor for responsiveness to LEV treatment in patients with newly diagnosed epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data that support the findings of this study are available upon reasonable request.

Code availability

Not applicable.

References

  1. Celdran de Castro A, Nascimento FA, Beltran-Corbellini A, Toledano R, Garcia-Morales I, Gil-Nagel A, Aledo-Serrano A (2023) Levetiracetam, from broad-spectrum use to precision prescription: A narrative review and expert opinion. Seizure 107:121–131. https://doi.org/10.1016/j.seizure.2023.03.017

    Article  PubMed  Google Scholar 

  2. Chen Z, Brodie MJ, Liew D, Kwan P (2018) Treatment Outcomes in Patients With Newly Diagnosed Epilepsy Treated With Established and New Antiepileptic Drugs: A 30-Year Longitudinal Cohort Study. JAMA Neurol 75(3):279–286. https://doi.org/10.1001/jamaneurol.2017.3949

    Article  PubMed  Google Scholar 

  3. Stephen LJ, Kwan P, Brodie MJ (2001) Does the cause of localisation-related epilepsy influence the response to antiepileptic drug treatment? Epilepsia 42(3):357–362. https://doi.org/10.1046/j.1528-1157.2001.29000.x

    Article  CAS  PubMed  Google Scholar 

  4. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342(5):314–319. https://doi.org/10.1056/NEJM200002033420503

    Article  CAS  PubMed  Google Scholar 

  5. Lynch JM, Tate SK, Kinirons P, Weale ME, Cavalleri GL, Depondt C, Murphy K, O’Rourke D, Doherty CP, Shianna KV, Wood NW, Sander JW, Delanty N, Goldstein DB, Sisodiya SM (2009) No major role of common SV2A variation for predisposition or levetiracetam response in epilepsy. Epilepsy Res 83(1):44–51. https://doi.org/10.1016/j.eplepsyres.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  6. Croce P, Ricci L, Pulitano P, Boscarino M, Zappasodi F, Lanzone J, Narducci F, Mecarelli O, Di Lazzaro V, Tombini M, Assenza G (2021) Machine learning for predicting levetiracetam treatment response in temporal lobe epilepsy. Clin Neurophysiol 132(12):3035–3042. https://doi.org/10.1016/j.clinph.2021.08.024

    Article  PubMed  Google Scholar 

  7. Zhang JH, Han X, Zhao HW, Zhao D, Wang N, Zhao T, He GN, Zhu XR, Zhang Y, Han JY, Huang DL (2018) Personalized prediction model for seizure-free epilepsy with levetiracetam therapy: a retrospective data analysis using support vector machine. Br J Clin Pharmacol 84(11):2615–2624. https://doi.org/10.1111/bcp.13720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee HJ, Park KM (2019) Structural and functional connectivity in newly diagnosed juvenile myoclonic epilepsy. Acta Neurol Scand 139(5):469–475. https://doi.org/10.1111/ane.13079

    Article  PubMed  Google Scholar 

  9. Lee DA, Lee HJ, Kim BJ, Park BS, Kim SE, Park KM (2021) Identification of focal epilepsy by diffusion tensor imaging using machine learning. Acta Neurol Scand 143(6):637–645. https://doi.org/10.1111/ane.13407

    Article  CAS  PubMed  Google Scholar 

  10. Park KM, Lee BI, Shin KJ, Ha SY, Park J, Kim TH, Mun CW, Kim SE (2018) Progressive topological disorganization of brain network in focal epilepsy. Acta Neurol Scand 137(4):425–431. https://doi.org/10.1111/ane.12899

    Article  CAS  PubMed  Google Scholar 

  11. Stufflebeam SM, Liu H, Sepulcre J, Tanaka N, Buckner RL, Madsen JR (2011) Localization of focal epileptic discharges using functional connectivity magnetic resonance imaging. J Neurosurg 114(6):1693–1697. https://doi.org/10.3171/2011.1.JNS10482

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim J, Lee WG, Park S, Park KM (2020) Can we predict drug response by functional connectivity in patients with juvenile myoclonic epilepsy? Clin Neurol Neurosurg 198:106119. https://doi.org/10.1016/j.clineuro.2020.106119

    Article  PubMed  Google Scholar 

  13. Lee HJ, Park KM (2020) Intrinsic hippocampal and thalamic networks in temporal lobe epilepsy with hippocampal sclerosis according to drug response. Seizure 76:32–38. https://doi.org/10.1016/j.seizure.2020.01.010

    Article  PubMed  Google Scholar 

  14. Park KM, Cho KH, Lee HJ, Heo K, Lee BI, Kim SE (2020) Predicting the antiepileptic drug response by brain connectivity in newly diagnosed focal epilepsy. J Neurol 267(4):1179–1187. https://doi.org/10.1007/s00415-020-09697-4

    Article  CAS  PubMed  Google Scholar 

  15. Taoka T, Masutani Y, Kawai H, Nakane T, Matsuoka K, Yasuno F, Kishimoto T, Naganawa S (2017) Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Jpn J Radiol 35(4):172–178. https://doi.org/10.1007/s11604-017-0617-z

    Article  PubMed  Google Scholar 

  16. Buccellato FR, D’Anca M, Serpente M, Arighi A, Galimberti D (2022) The Role of Glymphatic System in Alzheimer’s and Parkinson’s Disease Pathogenesis. Biomedicines 10(9):2261. https://doi.org/10.3390/biomedicines10092261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee HJ, Lee DA, Shin KJ, Park KM (2022) Glymphatic system dysfunction in patients with juvenile myoclonic epilepsy. J Neurol 269(4):2133–2139. https://doi.org/10.1007/s00415-021-10799-w

    Article  CAS  PubMed  Google Scholar 

  18. Kim J, Lee DA, Lee HJ, Park KM (2023) Glymphatic system dysfunction in patients with occipital lobe epilepsy. J Neuroimaging 33(3):455–461. https://doi.org/10.1111/jon.13083

    Article  PubMed  Google Scholar 

  19. Lee DA, Park BS, Ko J, Park SH, Lee YJ, Kim IH, Park JH, Park KM (2022) Glymphatic system dysfunction in temporal lobe epilepsy patients with hippocampal sclerosis. Epilepsia Open 7(2):306–314. https://doi.org/10.1002/epi4.12594

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lee DA, Lee J, Park KM (2022) Glymphatic system impairment in patients with status epilepticus. Neuroradiology 64(12):2335–2342. https://doi.org/10.1007/s00234-022-03018-4

    Article  PubMed  Google Scholar 

  21. Park KM, Kim KT, Lee DA, Cho YW (2022) Structural brain connectivity in patients with restless legs syndrome: a diffusion tensor imaging study. Sleep 45(7):zsac099. https://doi.org/10.1093/sleep/zsac099

    Article  PubMed  Google Scholar 

  22. Park KM, Kim KT, Kang KW, Park JA, Seo JG, Kim J, Chang H, Kim EY, Cho YW, Society RLSSotKSR (2022) Alterations of Functional Connectivity in Patients With Restless Legs Syndrome. J Clin Neurol 18(3):290–297. https://doi.org/10.3988/jcn.2022.18.3.290

    Article  PubMed  PubMed Central  Google Scholar 

  23. Farahani FV, Karwowski W, Lighthall NR (2019) Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic Review. Front Neurosci 13:585. https://doi.org/10.3389/fnins.2019.00585

    Article  PubMed  PubMed Central  Google Scholar 

  24. van Diessen E, Zweiphenning WJ, Jansen FE, Stam CJ, Braun KP, Otte WM (2014) Brain Network Organization in Focal Epilepsy: A Systematic Review and Meta-Analysis. PLoS ONE 9(12):e114606. https://doi.org/10.1371/journal.pone.0114606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dadas A, Washington J, Janigro D (2016) Cerebral Waste Accumulation and Glymphatic Clearance as Mechanisms of Human Neurological Diseases. J Neurol Neuromedicine 1(7):15–19. https://doi.org/10.29245/2572.942X/2016/7.1082

    Article  PubMed  PubMed Central  Google Scholar 

  26. Salimeen MSA, Liu C, Li X, Wang M, Singh M, Si S, Li M, Cheng Y, Wang X, Zhao H, Wu F, Zhang Y, Tafawa H, Pradhan A, Yang G, Yang J (2021) Exploring Variances of White Matter Integrity and the Glymphatic System in Simple Febrile Seizures and Epilepsy. Front Neurol 12:595647. https://doi.org/10.3389/fneur.2021.595647

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gorter JA, van Vliet EA, Aronica E (2015) Status epilepticus, blood-brain barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav 49:13–16. https://doi.org/10.1016/j.yebeh.2015.04.047

    Article  PubMed  Google Scholar 

  28. Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200(6):629–638. https://doi.org/10.1046/j.1469-7580.2002.00064.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lohela TJ, Lilius TO, Nedergaard M (2022) The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discov 21(10):763–779. https://doi.org/10.1038/s41573-022-00500-9

    Article  CAS  PubMed  Google Scholar 

  30. Xia L, Ou S, Pan S (2017) Initial Response to Antiepileptic Drugs in Patients with Newly Diagnosed Epilepsy As a Predictor of Long-term Outcome. Front Neurol 8:658. https://doi.org/10.3389/fneur.2017.00658

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brodie MJ, Barry SJ, Bamagous GA, Norrie JD, Kwan P (2012) Patterns of treatment response in newly diagnosed epilepsy. Neurology 78(20):1548–1554. https://doi.org/10.1212/WNL.0b013e3182563b19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Daewoong Bio Inc.

Funding

This study has not been funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Min Park.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.A., Lee, HJ. & Park, K.M. Structural connectivity as a predictive factor for responsiveness to levetiracetam treatment in epilepsy. Neuroradiology 66, 93–100 (2024). https://doi.org/10.1007/s00234-023-03261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-023-03261-3

Keywords

Navigation