Skip to main content
Log in

Progressive white matter degeneration in patients with spinocerebellar ataxia type 2

  • Advanced Neuroimaging
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Spinocerebellar ataxia type 2 (SCA2) is a progressive neurodegenerative disorder characterized by cerebellar atrophy. However, studies to elucidate the longitudinal progression of the neuropathology are limited. We sought to identify brain macrostructural and microstructural alterations in patients with SCA2 using fixel-based analysis (FBA) to better understand its distribution patterns and progression.

Methods

We enrolled 9 patients with SCA2 and 16 age- and gender-matched controls. Longitudinal clinical and imaging data were collected at baseline, and 3.5 years later. Fiber density (FD), fiber-bundle cross-section (FC), and a combination of FD and FC (FDC) were calculated. The paired t-test was used to examine longitudinal differences. The associations between fixel-based metrics and clinical variables were explored in SCA2 patients.

Results

At baseline, patients with SCA2 displayed multiple white matter tracts with significantly decreased FD, FC, and FDC in the corticospinal tract, cerebellar peduncles, brainstem, corpus callosum, thalamus, striatum, and prefrontal cortex, compared to controls. Over time, many of these macrostructural and microstructural alterations progressed, manifesting lower FD, FC, and FDC in corticospinal tract, middle cerebellar peduncle, brainstem, striatum, fornix, and cingulum. No significant brain white matter alterations were found in the healthy controls over time. There was no association between the FBA-derived metrics and clinical variables in SCA2.

Conclusion

This study provides evidence of brain macrostructural and microstructural alterations and of progression over time in SCA2. The FBA-derived metrics may serve as potential biomarkers of SCA2 progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are available from a public dataset via OpenNeuro (https://openneuro.org/datasets/ds001378/versions/00003).

Code availability

None.

References

  1. Lorenzetti D, Bohlega S, Zoghbi HY (1997) The expansion of the CAG repeat in ataxin-2 is a frequent cause of autosomal dominant spinocerebellar ataxia. Neurology 49:1009–1013

    Article  CAS  PubMed  Google Scholar 

  2. Magana JJ, Velazquez-Perez L, Cisneros B (2013) Spinocerebellar ataxia type 2: clinical presentation, molecular mechanisms, and therapeutic perspectives. Mol Neurobiol 47:90–104

    Article  CAS  PubMed  Google Scholar 

  3. Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rub U (2012) Brain pathology of spinocerebellar ataxias. Acta Neuropathol 124:1–21

    Article  CAS  PubMed  Google Scholar 

  4. Lupo M, Olivito G, Iacobacci C, Clausi S, Romano S, Masciullo M, Molinari M, Cercignani M, Bozzali M, Leggio M (2018) The cerebellar topography of attention sub-components in spinocerebellar ataxia type 2. Cortex 108:35–49

    Article  PubMed  Google Scholar 

  5. Mascalchi M, Diciotti S, Giannelli M, Ginestroni A, Soricelli A, Nicolai E, Aiello M, Tessa C, Galli L, Dotti MT, Piacentini S, Salvatore E, Toschi N (2014) Progression of brain atrophy in spinocerebellar ataxia type 2: a longitudinal tensor-based morphometry study. PLoS One 9:e89410

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stezin A, Bhardwaj S, Khokhar S, Hegde S, Jain S, Bharath RD, Saini J, Pal PK (2021) In vivo microstructural white matter changes in early spinocerebellar ataxia 2. Acta Neurol Scand 143:326–332

    Article  CAS  PubMed  Google Scholar 

  7. Clausi S, Olivito G, Siciliano L, Lupo M, Bozzali M, Masciullo M, Molinari M, Romano S, Leggio M (2021) The neurobiological underpinning of the social cognition impairments in patients with spinocerebellar ataxia type 2. Cortex 138:101–112

    Article  PubMed  Google Scholar 

  8. Mascalchi M, Toschi N, Giannelli M, Ginestroni A, Della Nave R, Nicolai E, Bianchi A, Tessa C, Salvatore E, Aiello M, Soricelli A, Diciotti S (2015) Progression of microstructural damage in spinocerebellar ataxia type 2: a longitudinal DTI study. AJNR Am J Neuroradiol 36:1096–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raffelt DA, Tournier JD, Smith RE, Vaughan DN, Jackson G, Ridgway GR, Connelly A (2017) Investigating white matter fibre density and morphology using fixel-based analysis. Neuroimage 144:58–73

    Article  PubMed  Google Scholar 

  10. Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J (2013) Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp 34:2747–2766

    Article  PubMed  Google Scholar 

  11. Seehaus A, Roebroeck A, Bastiani M, Fonseca L, Bratzke H, Lori N, Vilanova A, Goebel R, Galuske R (2015) Histological validation of high-resolution DTI in human post mortem tissue. Front Neuroanat 9:98

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dhollander T, Clemente A, Singh M, Boonstra F, Civier O, Duque JD, Egorova N, Enticott P, Fuelscher I, Gajamange S, Genc S, Gottlieb E, Hyde C, Imms P, Kelly C, Kirkovski M, Kolbe S, Liang X, Malhotra A et al (2021) Fixel-based analysis of diffusion MRI: methods, applications, challenges and opportunities. Neuroimage 241:118417

    Article  PubMed  Google Scholar 

  13. Adanyeguh IM, Perlbarg V, Henry PG, Rinaldi D, Petit E, Valabregue R, Brice A, Durr A, Mochel F (2018) Autosomal dominant cerebellar ataxias: imaging biomarkers with high effect sizes. Neuroimage Clin 19:858–867

    Article  PubMed  PubMed Central  Google Scholar 

  14. Park YW, Joers JM, Guo B, Hutter D, Bushara K, Adanyeguh IM, Eberly LE, Oz G, Lenglet C (2020) Assessment of cerebral and cerebellar white matter microstructure in spinocerebellar ataxias 1, 2, 3, and 6 using diffusion MRI. Front Neurol 11:411

    Article  PubMed  PubMed Central  Google Scholar 

  15. Filla A, DeMichele G, Caruso G, Marconi R, Campanella G (1990) Genetic data and natural history of Friedreich’s disease: a study of 80 Italian patients. J Neurol 237:345–351

    Article  CAS  PubMed  Google Scholar 

  16. Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM, Coutinho P, Ben Hamida M, Campanella G, Filla A, Schut L, Timann D, Honnorat J, Nighoghossian N, Manyam B (1997) International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145:205–211

    Article  CAS  PubMed  Google Scholar 

  17. Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, Christiaens D, Jeurissen B, Yeh CH, Connelly A (2019) MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202:116137

    Article  PubMed  Google Scholar 

  18. Veraart J, Fieremans E, Novikov DS (2016) Diffusion MRI noise mapping using random matrix theory. Magn Reson Med 76:1582–1593

    Article  CAS  PubMed  Google Scholar 

  19. Smith RE, Tournier JD, Calamante F, Connelly A (2013) SIFT: spherical-deconvolution informed filtering of tractograms. Neuroimage 67:298–312

    Article  PubMed  Google Scholar 

  20. Raffelt DA, Smith RE, Ridgway GR, Tournier JD, Vaughan DN, Rose S, Henderson R, Connelly A (2015) Connectivity-based fixel enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. Neuroimage 117:40–55

    Article  PubMed  Google Scholar 

  21. Velazquez-Perez LC, Rodriguez-Labrada R, Fernandez-Ruiz J (2017) Spinocerebellar ataxia type 2: clinicogenetic aspects, mechanistic insights, and management approaches. Front Neurol 8:472

    Article  PubMed  PubMed Central  Google Scholar 

  22. Salvatore E, Tedeschi E, Mollica C, Vicidomini C, Varrone A, Coda AR, Brunetti A, Salvatore M, De Michele G, Filla A, Pappata S (2014) Supratentorial and infratentorial damage in spinocerebellar ataxia 2: a diffusion-weighted MRI study. Mov Disord 29:780–786

    Article  PubMed  Google Scholar 

  23. Mascalchi M, Marzi C, Giannelli M, Ciulli S, Bianchi A, Ginestroni A, Tessa C, Nicolai E, Aiello M, Salvatore E, Soricelli A, Diciotti S (2018) Histogram analysis of DTI-derived indices reveals pontocerebellar degeneration and its progression in SCA2. PLoS One 13:e0200258

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moreno-Lopez Y, Olivares-Moreno R, Cordero-Erausquin M, Rojas-Piloni G (2016) Sensorimotor integration by corticospinal system. Front Neuroanat 10:24

    Article  PubMed  PubMed Central  Google Scholar 

  25. Barthelemy D, Grey MJ, Nielsen JB, Bouyer L (2011) Involvement of the corticospinal tract in the control of human gait. Prog Brain Res 192:181–197

    Article  PubMed  Google Scholar 

  26. Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522

    Article  CAS  PubMed  Google Scholar 

  27. Welniarz Q, Dusart I, Roze E (2017) The corticospinal tract: evolution, development, and human disorders. Dev Neurobiol 77:810–829

    Article  PubMed  Google Scholar 

  28. Hernandez-Castillo CR, Vaca-Palomares I, Galvez V, Campos-Romo A, Diaz R, Fernandez-Ruiz J (2016) Cognitive deficits correlate with white matter deterioration in spinocerebellar ataxia type 2. J Int Neuropsychol Soc 22:486–491

    Article  PubMed  Google Scholar 

  29. Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, Molinari M, Cercignani M, Bozzali M, Leggio M (2017) Microstructural MRI basis of the cognitive functions in patients with spinocerebellar ataxia type 2. Neuroscience 366:44–53

    Article  CAS  PubMed  Google Scholar 

  30. Kremlacek J, Valis M, Masopust J, Urban A, Zumrova A, Talab R, Kuba M, Kubova Z, Langrova J (2011) An electrophysiological study of visual processing in spinocerebellar ataxia type 2 (SCA2). Cerebellum 10:32–42

    Article  PubMed  Google Scholar 

  31. Schilling KG, Janve V, Gao Y, Stepniewska I, Landman BA, Anderson AW (2018) Histological validation of diffusion MRI fiber orientation distributions and dispersion. Neuroimage 165:200–221

    Article  PubMed  Google Scholar 

  32. Storelli L, Pagani E, Preziosa P, Filippi M, Rocca MA (2021) Measurement of white matter fiber-bundle cross-section in multiple sclerosis using diffusion-weighted imaging. Mult Scler 27:818–826

    Article  CAS  PubMed  Google Scholar 

  33. Raffelt D, Tournier JD, Rose S, Ridgway GR, Henderson R, Crozier S, Salvado O, Connelly A (2012) Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage 59:3976–3994

    Article  PubMed  Google Scholar 

  34. Mito R, Raffelt D, Dhollander T, Vaughan DN, Tournier JD, Salvado O, Brodtmann A, Rowe CC, Villemagne VL, Connelly A (2018) Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain 141:888–902

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Data for this study was obtained from the OpenNeuro platform (https://openneuro.org/datasets/ds001378/versions/00003). The authors thank Mascalchi M, Marzi C, Giannelli M, Ciulli S, Bianchi A, Ginestroni A, Tessa C, Nicolai E, Aiello M, Salvatore E, Soricelli A, and Diciotti S for their work on “Histogram analysis of DTI-derived indices reveals pontocerebellar degeneration and its progression in SCA2” (DOI: 10.1371/journal.pone.0200258). Their work provided valuable data and insights that significantly contributed to the findings of this study.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Xiong or Feng Gao.

Ethics declarations

Ethics approval

This research was approved by the Ethics Committee of the Careggi University Hospital of Florence, Italy.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Competing interests

None of the authors of this manuscript has any potential conflict of interest related to the content of this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Y., Li, Z., Xiong, F. et al. Progressive white matter degeneration in patients with spinocerebellar ataxia type 2. Neuroradiology 66, 101–108 (2024). https://doi.org/10.1007/s00234-023-03260-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-023-03260-4

Keywords

Navigation