Skip to main content
Log in

Association between brain and upper cervical spinal cord atrophy assessed by MRI and disease aggressiveness in amyotrophic lateral sclerosis

  • Advanced Neuroimaging
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To study the relative contributions of brain and upper cervical spinal cord compartmental atrophy to disease aggressiveness in amyotrophic lateral sclerosis (ALS).

Methods

Twenty-nine ALS patients and 24 age- and gender-matched healthy controls (HC) were recruited. Disease duration and the Revised-ALS Functional Rating Scale (ALSFRS-R) at baseline, 3- and 6-months follow-up were assessed. Patients were clinically differentiated into fast (n=13) and slow (n=16) progressors according to their ALSFRS-R progression rate. Brain grey (GM) and white matter, brainstem sub-structures volumes and spinal cord cross-sectional area (SC-CSA) at C1-C2 vertebral levels were measured from a 3D-T1-weighted MRI.

Results

Fast progressors showed significant GM, medulla oblongata and SC atrophy compared to HC (p<0.001, p=0.013 and p=0.008) and significant GM atrophy compared to slow progressors (p=0.008). GM volume correlated with the ALSFRS-R progression rate (Rho/p=-0.487/0.007), the ALSFRS-R at 3-months (Rho/p=0.622/0.002), and ALSFRS-R at 6-months (Rho/p=0.407/0.039). Medulla oblongata volume and SC-CSA correlated with the ALSFRS-R at 3-months (Rho/p=0.510/0.015 and Rho/p=0.479/0.024). MRI measures showed high performance to discriminate between fast and slow progressors.

Conclusion

Our study suggests an association between compartmental atrophy and disease aggressiveness. This result is consistent with the combination of upper and lower motor neuron degeneration as the main driver of disease worsening and severity in ALS. Our study highlights the potential of brain and spinal cord atrophy measured by MRI as biomarker of disease aggressiveness signature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Clarke JL, Jackson JH (1867) On a case of muscular atrophy, with disease of the spinal cord and medulla oblongata. Med Chir Trans 50:489–498. https://doi.org/10.1177/095952876705000122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Charcot J, Joffroy A (1869) Deux cas d'atrophie musculaire progressive avec lésions de la substance grise et de faisceaux antérolatéraux de la moelle épinière. Arch Physiol Norm Pathol 1:354–357

    Google Scholar 

  3. Holmes G (1909) The pathology of amyotrophic lateral sclerosis. Rev Neurol Psychiatr 7:693–725

    Google Scholar 

  4. Sarica A, Cerasa A, Valentino P, Yeatman J, Trotta M, Barone S, Granata A, Nisticò R, Perrotta P, Pucci F, Quattrone A (2017) The corticospinal tract profile in amyotrophic lateral sclerosis. Hum Brain Mapp 38(2):727–739. https://doi.org/10.1002/hbm.23412

    Article  PubMed  Google Scholar 

  5. Goyal NA, Berry JD, Windebank A et al (2020) Addressing heterogeneity in amyotrophic lateral sclerosis Clinical Trials. Muscle Nerve 62(2):156–166. https://doi.org/10.1002/mus.26801

    Article  PubMed  PubMed Central  Google Scholar 

  6. Steinbach R, Gaur N, Roediger A et al (2021) Disease aggressiveness signatures of amyotrophic lateral sclerosis in white matter tracts revealed by the D50 disease progression model. Hum Brain Mapp 42(3):737–752. https://doi.org/10.1002/hbm.25258

    Article  PubMed  Google Scholar 

  7. Dieckmann N, Roediger A, Prell T et al (2022) Cortical and subcortical grey matter atrophy in Amyotrophic Lateral Sclerosis correlates with measures of disease accumulation independent of disease aggressiveness. Neuroimage Clin 36:103162. https://doi.org/10.1016/j.nicl.2022.103162

    Article  PubMed  PubMed Central  Google Scholar 

  8. Müller HP, Agosta F, Riva N et al (2017) Fast progressive lower motor neuron disease is an ALS variant: A two-centre tract of interest-based MRI data analysis. Neuroimage Clin 14(17):145–152. https://doi.org/10.1016/j.nicl.2017.10.008

    Article  Google Scholar 

  9. Menke RA, Körner S, Filippini N et al (2014) Widespread grey matter pathology dominates the longitudinal cerebral MRI and clinical landscape of amyotrophic lateral sclerosis. Brain 137(Pt 9):2546–2555. https://doi.org/10.1093/brain/awu162

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sheng L, Ma H, Zhong J, Shang H, Shi H, Pan P (2015) Motor and extra-motor gray matter atrophy in amyotrophic lateral sclerosis: quantitative meta-analyses of voxel-based morphometry studies. Neurobiol Aging 36(12):3288–3299. https://doi.org/10.1016/j.neurobiolaging.2015.08.018

    Article  PubMed  Google Scholar 

  11. El Mendili MM, Grapperon AM, Dintrich R et al (2022) Alterations of Microstructure and Sodium Homeostasis in Fast Amyotrophic Lateral Sclerosis Progressors: A Brain DTI and Sodium MRI Study. AJNR Am J Neuroradiol 43(7):984–990. https://doi.org/10.3174/ajnr.A7559

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bede P, Chipika RH, Finegan E et al (2019) Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study. Neuroimage Clin 24:102054. https://doi.org/10.1016/j.nicl.2019.102054

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li H, Zhang Q, Duan Q et al (2021) Brainstem Involvement in Amyotrophic Lateral Sclerosis: A Combined Structural and Diffusion Tensor MRI Analysis. Front Neurosci 2(15):675444. https://doi.org/10.3389/fnins.2021.675444

    Article  Google Scholar 

  14. El Mendili MM, Querin G, Bede P, Pradat PF (2019) Spinal Cord Imaging in Amyotrophic Lateral Sclerosis: Historical Concepts-Novel Techniques. Front Neurol 12(10):350. https://doi.org/10.3389/fneur.2019.00350

    Article  Google Scholar 

  15. Agosta F, Spinelli EG, Filippi M (2018) Neuroimaging in amyotrophic lateral sclerosis: current and emerging uses. Expert Rev Neurother 18(5):395–406. https://doi.org/10.1080/14737175.2018.1463160

    Article  CAS  PubMed  Google Scholar 

  16. Schuster C, Hardiman O, Bede P (2017) Survival prediction in Amyotrophic lateral sclerosis based on MRI measures and clinical characteristics. BMC Neurol 17(1):73. https://doi.org/10.1186/s12883-017-0854-x

    Article  PubMed  PubMed Central  Google Scholar 

  17. Querin G, El Mendili MM, Lenglet T et al (2017) Spinal cord multi-parametric magnetic resonance imaging for survival prediction in amyotrophic lateral sclerosis. Eur J Neurol 24(8):1040–1046. https://doi.org/10.1111/ene.13329

    Article  CAS  PubMed  Google Scholar 

  18. van der Burgh HK, Westeneng HJ et al (2019) Cross-sectional and longitudinal assessment of the upper cervical spinal cord in motor neuron disease. Neuroimage Clin 24:101984. https://doi.org/10.1016/j.nicl.2019.101984

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cedarbaum JM, Stambler N, Malta E et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 169(1-2):13–21. https://doi.org/10.1016/s0022-510x(99)00210-5

    Article  CAS  PubMed  Google Scholar 

  20. Tustison NJ, Avants BB, Cook PA et al (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29(6):1310–1320. https://doi.org/10.1109/TMI.2010.2046908

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gaser C, Dahnke R, Thompson PM, Kurth F, Luders E (2022) Alzheimer’s Disease Neuroimaging Initiative. CAT – A Computational Anatomy Toolbox for the Analysis of Structural MRI Data. bioRxiv:495736. https://doi.org/10.1101/2022.06.11.495736

  22. Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56(3):907–922. https://doi.org/10.1016/j.neuroimage.2011.02.046

    Article  PubMed  Google Scholar 

  23. El Mendili MM, Petracca M, Podranski K, Fleysher L, Cocozza S, Inglese M (2020) SUITer: An Automated Method for Improving Segmentation of Infratentorial Structures at Ultra-High-Field MRI. J Neuroimaging 30(1):28–39. https://doi.org/10.1111/jon.12672

    Article  PubMed  Google Scholar 

  24. Manjón JV, Coupé P, Martí-Bonmatí L, Collins DL, Robles M (2010) Adaptive non-local means denoising of MR images with spatially varying noise levels. J Magn Reson Imaging 31(1):192–203. https://doi.org/10.1002/jmri.22003

    Article  PubMed  Google Scholar 

  25. Gros C, De Leener B, Badji A et al (2019) Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage 1(184):901–915. https://doi.org/10.1016/j.neuroimage.2018.09.081

    Article  Google Scholar 

  26. Oh J, Seigo M, Saidha S et al (2014Dec) Spinal cord normalization in multiple sclerosis. J Neuroimaging 24(6):577–584. https://doi.org/10.1111/jon.12097

  27. Healy BC, Arora A, Hayden DL et al (2012) Approaches to normalization of spinal cord volume: application to multiple sclerosis. J Neuroimaging 22(3):e12–e19. https://doi.org/10.1111/j.1552-6569.2011.00629.x

    Article  PubMed  Google Scholar 

  28. Tahedl M, Tan EL, Chipika RH et al (2023) Brainstem-cortex disconnection in amyotrophic lateral sclerosis: bulbar impairment, genotype associations, asymptomatic changes and biomarker opportunities. J Neurol. https://doi.org/10.1007/s00415-023-11682-6

  29. El Mendili MM, Cohen-Adad J, Pelegrini-Issac M et al (2014) Multi-parametric spinal cord MRI as potential progression marker in amyotrophic lateral sclerosis. PLoS One 9(4):e95516. https://doi.org/10.1371/journal.pone.0095516

    Article  PubMed  PubMed Central  Google Scholar 

  30. Finegan E, Li Hi Shing S, Chipika RH et al (2019) Widespread subcortical grey matter degeneration in primary lateral sclerosis: a multimodal imaging study with genetic profiling. Neuroimage Clin 24:102089. https://doi.org/10.1016/j.nicl.2019.102089

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tan RH, Devenney E, Dobson-Stone C et al (2014) Cerebellar integrity in the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS One 9(8):e105632. https://doi.org/10.1371/journal.pone.0105632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Prell T, Grosskreutz J (2013) The involvement of the cerebellum in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 14(7-8):507–515. https://doi.org/10.3109/21678421.2013.812661

    Article  CAS  PubMed  Google Scholar 

  33. Pizzarotti B, Palesi F, Vitali P et al (2020) Frontal and Cerebellar Atrophy Supports FTSD-ALS Clinical Continuum. Front Aging Neurosci 26(12):593526. https://doi.org/10.3389/fnagi.2020.593526

    Article  Google Scholar 

  34. Querin G, Biferi MG, Pradat PF (2022) Biomarkers for C9orf7-ALS in Symptomatic and Pre-symptomatic Patients: State-of-the-art in the New Era of Clinical Trials. J Neuromuscul Dis 9(1):25–37. https://doi.org/10.3233/JND-210754

    Article  PubMed  PubMed Central  Google Scholar 

  35. Senda J, Atsuta N, Watanabe H et al (2017) Structural MRI correlates of amyotrophic lateral sclerosis progression. J Neurol Neurosurg Psychiatry 88(11):901–907. https://doi.org/10.1136/jnnp-2016-314337

    Article  PubMed  Google Scholar 

  36. Wimmer T, Schreiber F, Hensiek N et al (2020) The upper cervical spinal cord in ALS assessed by cross-sectional and longitudinal 3T MRI. Sci Rep 10(1):1783. https://doi.org/10.1038/s41598-020-58687-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Branco LM, De Albuquerque M, De Andrade HM, Bergo FP, Nucci A, França MC Jr (2014) Spinal cord atrophy correlates with disease duration and severity in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 15(1-2):93–97. https://doi.org/10.3109/21678421.2013.852589

    Article  PubMed  Google Scholar 

  38. Taheri K, Vavasour IM, Abel S et al (2022) Cervical Spinal Cord Atrophy can be Accurately Quantified Using Head Images. Mult Scler J Exp Transl Clin 8(1):20552173211070760. https://doi.org/10.1177/20552173211070760

    Article  PubMed  PubMed Central  Google Scholar 

  39. Paquin MÊ, El Mendili MM, Gros C et al (2018) Spinal Cord Gray Matter Atrophy in Amyotrophic Lateral Sclerosis. AJNR Am J Neuroradiol 39(1):184–192. https://doi.org/10.3174/ajnr.A5427

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wendebourg MJ, Matthias Weigel M, Nicole Naumann N et al (2021) Spinal Cord Cervical and Thoracic Gray Matter Atrophy – an emerging imaging surrogate for Amyotrophic Lateral Sclerosis. Neurology 96(15):4099

    Google Scholar 

Download references

Funding

This research was funded by APHM (AORC Junior 2014 program), ARSLA (Association pour la Recherche sur la Sclérose Latérale Amyotrophique et autres maladies du motoneurone) and FRC (Fédération pour la Recherche sur le Cerveau).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Subjects recruitment was performed by Wafaa Zaaraoui, Aude-Marie GRAPPERON, Annie VERSCHUEREN and Shahram ATTARIAN. Material preparation, data collection and analysis were performed by Wafaa Zaaraoui, Aude-Marie GRAPPERON, Jean-Philippe RANJEVA and Mohamed Mounir EL MENDILI. The first draft of the manuscript was written by Wafaa Zaaraoui, Aude-Marie GRAPPERON, and Mohamed Mounir EL MENDILI and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohamed Mounir El Mendili.

Ethics declarations

Competing interests

All authors certify that there is no financial interest related to this study.

Ethics approval

This study was approved by the local ethics committee.

Informed consent

Written informed consent was obtained from all subjects before the study was initiated.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Mendili, M.M., Verschueren, A., Ranjeva, JP. et al. Association between brain and upper cervical spinal cord atrophy assessed by MRI and disease aggressiveness in amyotrophic lateral sclerosis. Neuroradiology 65, 1395–1403 (2023). https://doi.org/10.1007/s00234-023-03191-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-023-03191-0

Keywords

Navigation