Skip to main content

Advertisement

Log in

Altered thalamic volume in patients with mild autonomous cortisol secretion: a structural brain MRI study

  • Advanced Neuroimaging
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To compare thalamic volume and cognitive functions of patients with mild autonomous cortisol secretion (MACS) with control subjects and patients with overt Cushing’s syndrome (CS).

Methods

In this cross-sectional study, volumes of regions of interest were assessed using 3 T magnetic resonance imaging and a voxel-based morphometry approach in 23 patients with MACS, 21 patients with active CS, 27 patients with CS in remission, and 21 control subjects. Cognitive functions were assessed using validated questionnaires.

Results

Patients with MACS had smaller left thalamic (F = 3.8, p = 0.023), left posterior thalamic (F = 4.9, p = 0.01), left medial thalamic (F = 4.7, p = 0.028), and right lateral thalamic (F = 4.1, p = 0.025) volumes than control subjects. Patients with active CS also had smaller left thalamic (F = 3.8, p = 0.044), left posterior thalamic (F = 4.9, p = 0.007), left medial thalamic (F = 4.7, p = 0.006), and right lateral thalamic (F = 4.1, p = 0.042) volumes compared to controls. Patients with CS in remission had smaller left medial (F = 4.7, p = 0.030) and right lateral thalamic (F = 4.1, p = 0.028) volumes than controls. Neuropsychological tests showed no difference between the groups.

Conclusion

MACS may decrease thalamic volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nieman LK, Chrousos GP, Kellner C et al (1985) Successful treatment of Cushing’s syndrome with the glucocorticoid antagonist RU 486. J Clin Endocrinol Metab 61:536–540

    Article  CAS  PubMed  Google Scholar 

  2. De Kloet E (2005) Joels M, Holsboer F. Nat Rev Neurosci 6:463

    PubMed  Google Scholar 

  3. Momose KJ, Kjellberg RN, Kliman B (1971) High incidence of cortical atrophy of the cerebral and cerebellar hemispheres in Cushing’s disease. Radiology 99:341–348

    Article  CAS  PubMed  Google Scholar 

  4. De Kloet ER, Vreugdenhil E, Oitzl MS et al (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301

    PubMed  Google Scholar 

  5. Starkman MN, Giordani B, Gebarski SS et al (1999) Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing’s disease. Biol Psychiat 46:1595–1602

    Article  CAS  PubMed  Google Scholar 

  6. Starkman MN, Gebarski SS, Berent S et al (1992) Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiat 32:756–765

    Article  CAS  PubMed  Google Scholar 

  7. Starkman MN, Giordani B, Gebarski SS et al (2007) Improvement in mood and ideation associated with increase in right caudate volume. J Affect Disord 101:139–147

    Article  PubMed  Google Scholar 

  8. Santos A, Resmini E, Crespo I et al (2014) Small cerebellar cortex volume in patients with active Cushing’s syndrome. Eur J Endocrinol 171:461–469

    Article  CAS  PubMed  Google Scholar 

  9. Andela CD, Van der Werff S, Pannekoek JN et al (2013) Smaller grey matter volumes in the anterior cingulate cortex and greater cerebellar volumes in patients with long-term remission of Cushing’s disease: a case-control study. Eur J Endocrinol 169:811–819

    Article  CAS  PubMed  Google Scholar 

  10. Frimodt-Møller KE, Møllegaard Jepsen JR, Feldt-Rasmussen U et al (2019) Hippocampal volume, cognitive functions, depression, anxiety, and quality of life in patients with Cushing syndrome. J Clin Endocrinol Metab 104:4563–4577

    Article  PubMed  Google Scholar 

  11. Hook JN, Giordani B, Schteingart DE et al (2007) Patterns of cognitive change over time and relationship to age following successful treatment of Cushing’s disease. J Int Neuropsychol Soc 13:21–29

    Article  PubMed  Google Scholar 

  12. Resmini E, Santos A, Gomez-Anson B et al (2012) Verbal and visual memory performance and hippocampal volumes, measured by 3-Tesla magnetic resonance imaging, in patients with Cushing’s syndrome. J Clin Endocrinol Metab 97:663–671

    Article  CAS  PubMed  Google Scholar 

  13. Reincke M (2000) Subclinical Cushing’s syndrome. Endocrinol Metab Clin North Am 29:43–56

    Article  CAS  PubMed  Google Scholar 

  14. Terzolo M, Bovio S, Reimondo G et al (2005) Subclinical Cushing’s syndrome in adrenal incidentalomas. Endocrinol Metab Clin 34:423–439

    Article  Google Scholar 

  15. Chiodini I (2011) Diagnosis and treatment of subclinical hypercortisolism. J Clin Endocrinol Metab 96:1223–1236

    Article  CAS  PubMed  Google Scholar 

  16. Di Dalmazi G, Vicennati V, Garelli S et al (2014) Cardiovascular events and mortality in patients with adrenal incidentalomas that are either non-secreting or associated with intermediate phenotype or subclinical Cushing’s syndrome: a 15-year retrospective study. Lancet Diabetes Endocrinol 2:396–405

    Article  PubMed  Google Scholar 

  17. Di Dalmazi G, Vicennati V, Rinaldi E et al (2012) Progressively increased patterns of subclinical cortisol hypersecretion in adrenal incidentalomas differently predict major metabolic and cardiovascular outcomes: a large cross-sectional study. Eur J Endocrinol 166:669–677

    Article  PubMed  Google Scholar 

  18. Nieman LK (2015) Update on subclinical Cushing’s syndrome. Curr Opin Endocrinol Diabetes Obes 22:180–184

    Article  CAS  PubMed  Google Scholar 

  19. Starkman M (1999) Giordani B, Gebarski SS, Berent S, Schork MA, and Schteingart DE. Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing’s disease Biol Psychiatry 46:1595–1602

    CAS  PubMed  Google Scholar 

  20. Starkman MN, Giordani B, Gebarski SS et al (2003) Improvement in learning associated with increase in hippocampal formation volume. Biol Psychiat 53:233–238

    Article  PubMed  Google Scholar 

  21. Andela CD, van Haalen FM, Ragnarsson O et al (2015) Mechanisms in endocrinologY: Cushing’s syndrome causes irreversible effects on the human brain: a systematic review of structural and functional magnetic resonance imaging studies. Eur J Endocrinol 173:R1–R14

    Article  CAS  PubMed  Google Scholar 

  22. Jiang H, Yang W, Sun Q et al (2021) Trends in regional morphological changes in the brain after the resolution of hypercortisolism in Cushing’s disease: a complex phenomenon, not mere partial reversibility. Endocr Connect 10:1377–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tirosh A, RaviPrakash H, Papadakis GZ et al (2020) Computerized analysis of brain MRI parameter dynamics in young patients with Cushing syndrome—a case-control study. J Clin Endocrinol Metab 105:e2069–e2077

    Article  PubMed  Google Scholar 

  24. Giraldo-Chica M, Woodward ND (2017) Review of thalamocortical resting-state fMRI studies in schizophrenia. Schizophr Res 180:58–63

    Article  PubMed  Google Scholar 

  25. Halassa MM, Kastner S (2017) Thalamic functions in distributed cognitive control. Nat Neurosci 20:1669–1679

    Article  CAS  PubMed  Google Scholar 

  26. Association AD (2020) 6. Glycemic targets: standards of medical care in diabetes-2020. Diabetes Care 43:S66–S76

    Article  Google Scholar 

  27. James PA, Oparil S, Carter BL et al (2014) 2014 Evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 311:507–520

    Article  CAS  PubMed  Google Scholar 

  28. Fassnacht M, Arlt W, Bancos I et al (2016) Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the Study of Adrenal Tumors. Eur J Endocrinol 175:G1-g34

    Article  CAS  PubMed  Google Scholar 

  29. Bancos I, Prete A (2021) Approach to the patient with adrenal incidentaloma. J Clin Endocrinol Metab 106:3331–3353

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nieman LK, Biller BMK, Findling JW et al (2008) The diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 93:1526–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fleseriu M, Hashim IA, Karavitaki N et al (2016) Hormonal replacement in hypopituitarism in adults: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 101:3888–3921

    Article  CAS  PubMed  Google Scholar 

  32. Nieman LK, Biller BM, Findling JW et al (2015) Treatment of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 100:2807–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Molitch ME, Clemmons DR, Malozowski S et al (2011) Evaluation and treatment of adult growth hormone deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96:1587–1609

    Article  CAS  PubMed  Google Scholar 

  34. Ségonne F, Dale AM, Busa E et al (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22:1060–1075

    Article  PubMed  Google Scholar 

  35. Fischl B, Salat DH, van der Kouwe AJ et al (2004) Sequence-independent segmentation of magnetic resonance images. Neuroimage 23(Suppl 1):S69-84

    Article  PubMed  Google Scholar 

  36. Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355

    Article  CAS  PubMed  Google Scholar 

  37. Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20:70–80

    Article  CAS  PubMed  Google Scholar 

  38. Ségonne F, Pacheco J, Fischl B (2007) Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26:518–529

    Article  PubMed  Google Scholar 

  39. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050–11055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97

    Article  CAS  PubMed  Google Scholar 

  41. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207

    Article  CAS  PubMed  Google Scholar 

  42. Desikan RS, Ségonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980

    Article  PubMed  Google Scholar 

  43. Iglesias JE, Augustinack JC, Nguyen K et al (2015) A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage 115:117–137

    Article  PubMed  Google Scholar 

  44. Iglesias JE, Insausti R, Lerma-Usabiaga G et al (2018) A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage 183:314–326

    Article  PubMed  Google Scholar 

  45. Beck AT, Epstein N, Brown G et al (1988) An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol 56:893

    Article  CAS  PubMed  Google Scholar 

  46. Nasreddine ZS, Phillips NA, Bédirian V et al (2005) The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53:695–699

    Article  PubMed  Google Scholar 

  47. Kang JM, Cho YS, Park S et al (2018) Montreal cognitive assessment reflects cognitive reserve. BMC Geriatr 18:261

    Article  PubMed  PubMed Central  Google Scholar 

  48. Buschke H (1973) Selective reminding for analysis of memory and learning. J Verbal Learn Verbal Behav 12:543–550

    Article  Google Scholar 

  49. Larrabee GJ, Trahan DE, Levin HS (2000) Normative data for a six-trial administration of the verbal selective reminding test. Clin Neuropsychol 14:110–118

    Article  CAS  PubMed  Google Scholar 

  50. Rao SM, Leo GJ, Bernardin L et al (1991) Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology 41:685–691

    Article  CAS  PubMed  Google Scholar 

  51. CAMPBELL JR AL, Bogen JE, Smith A, (1981) Disorganization and reorganization of cognitive and sensorimotor functions in cerebral commissurotomy: compensatory roles of the forebrain commissures and cerebral hemispheres in man. Brain 104:493–511

    Article  Google Scholar 

  52. Boringa JB, Lazeron RH, Reuling IE et al (2001) The brief repeatable battery of neuropsychological tests: normative values allow application in multiple sclerosis clinical practice. Mult Scler 7:263–267

    Article  CAS  PubMed  Google Scholar 

  53. Sanfilipo MP, Benedict RH, Zivadinov R et al (2004) Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: the proportion vs. residual method. Neuroimage 22:1732–1743

    Article  PubMed  Google Scholar 

  54. Jiang H, He NY, Sun YH et al (2017) Altered spontaneous brain activity in Cushing’s disease: a resting-state functional MRI study. Clin Endocrinol 86:367–376

    Article  CAS  Google Scholar 

  55. Khiat A, Yared Z, Bard C et al (2001) Long-term brain metabolic alterations in exogenous Cushing’s syndrome as monitored by proton magnetic resonance spectroscopy. Brain Res 911:134–140

    Article  CAS  PubMed  Google Scholar 

  56. Khiat A, Bard C, Lacroix A et al (1999) Brain metabolic alterations in Cushing’s syndrome as monitored by proton magnetic resonance spectroscopy. NMR in Biomedicine: an International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo 12:357–363

    Article  CAS  Google Scholar 

  57. McEwen BS, Sapolsky RM (1995) Stress and cognitive function. Curr Opin Neurobiol 5:205–216

    Article  CAS  PubMed  Google Scholar 

  58. Sapolsky RM (1994) The physiological relevance of glucocorticoid endangerment of the hippocampus a. Ann N Y Acad Sci 746:294–304

    Article  CAS  PubMed  Google Scholar 

  59. Tjuvajev J, Uehara H, Desai R et al (1996) Corticotropin-releasing factor decreases vasogenic brain edema. Can Res 56:1352–1360

    CAS  Google Scholar 

  60. Golden EC, Graff-Radford J, Jones DT et al (2016) Mediodorsal nucleus and its multiple cognitive functions. Neurology 87:2161–2168

    Article  PubMed  Google Scholar 

  61. Shine JM, Hearne LJ, Breakspear M et al (2019) The low-dimensional neural architecture of cognitive complexity is related to activity in medial thalamic nuclei. Neuron 104:849-855.e843

    Article  CAS  PubMed  Google Scholar 

  62. Van der Werf YD, Jolles J, Witter MP et al (2003) Contributions of thalamic nuclei to declarative memory functioning. Cortex 39:1047–1062

    Article  PubMed  Google Scholar 

  63. Zhou H, Schafer RJ, Desimone R (2016) Pulvinar-cortex interactions in vision and attention. Neuron 89:209–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mitchell AS, Chakraborty S (2013) What does the mediodorsal thalamus do? Front Syst Neurosci 7:37

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hong W, Li M, Liu Z et al (2021) Heterogeneous alterations in thalamic subfields in major depression disorder. J Affect Disord 295:1079–1086

    Article  PubMed  Google Scholar 

  66. Morimoto M, Morita N, Ozawa H et al (1996) Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an immunohistochemical and in situ hybridization study. Neurosci Res 26:235–269

    Article  CAS  PubMed  Google Scholar 

  67. Sherman SM (2007) The thalamus is more than just a relay. Curr Opin Neurobiol 17:417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Benarroch EE (2015) Pulvinar: associative role in cortical function and clinical correlations. Neurology 84:738–747

    Article  PubMed  Google Scholar 

  69. Robinson DL, Petersen SE (1992) The pulvinar and visual salience. Trends Neurosci 15:127–132

    Article  CAS  PubMed  Google Scholar 

  70. Goldman-Rakic PS, Porrino LJ (1985) The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J Comp Neurol 242:535–560

    Article  CAS  PubMed  Google Scholar 

  71. Schmahmann JD (2003) Vascular syndromes of the thalamus. Stroke 34:2264–2278

    Article  PubMed  Google Scholar 

  72. Andela CD, Van Haalen FM, Ragnarsson O et al (2017) Cushing’s syndrome causes irreversible effects on the human brain: a systematic review of structural and functional MRI studies. Eur J Endocrinol 173:R1–R14

    Article  Google Scholar 

  73. Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5:374–381

    Article  CAS  PubMed  Google Scholar 

  74. Baker S, Rogers R, Owen AM et al (1996) Neural systems engaged by planning: a PET study of the Tower of London task. Neuropsychologia 34:515–526

    Article  CAS  PubMed  Google Scholar 

  75. Gaillard WD, Hertz-Pannier L, Mott SH et al (2000) Functional anatomy of cognitive development: fMRI of verbal fluency in children and adults. Neurology 54:180–180

    Article  CAS  PubMed  Google Scholar 

  76. Rossi AF, Pessoa L, Desimone R et al (2009) The prefrontal cortex and the executive control of attention. Exp Brain Res 192:489–497

    Article  PubMed  Google Scholar 

  77. Pivonello R, Simeoli C, De Martino M, et al (2015) Neuropsychiatric disorders in Cushing’s syndrome. Front Neurosci 9 129

  78. Tiemensma J, Andela CD, Biermasz NR et al (2016) Mild cognitive deficits in patients with primary adrenal insufficiency. Psychoneuroendocrinology 63:170–177

    Article  PubMed  Google Scholar 

  79. Morelli V, Ghielmetti A, Caldiroli A et al (2021) Mental health in patients with adrenal incidentalomas: is there a relation with different degrees of cortisol secretion? J Clin Endocrinol Metab 106:e130–e139

    Article  PubMed  Google Scholar 

  80. Liu MS, Tian ZY, Zhang Z, et al (2022) Impaired cognitive function in patients with autonomous cortisol secretion in adrenal incidentalomas. J Clin Endocrinol Metab

  81. Lupien SJ, De Leon M, De Santi S et al (1998) Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci 1:69–73

    Article  CAS  PubMed  Google Scholar 

  82. Pell GS, Briellmann RS, Chan CHP et al (2008) Selection of the control group for VBM analysis: influence of covariates, matching and sample size. Neuroimage 41:1324–1335

    Article  PubMed  Google Scholar 

  83. Buhl CS, Stødkilde-Jørgensen H, Videbech P et al (2018) Escitalopram ameliorates hypercortisolemia and insulin resistance in low birth weight men with limbic brain alterations. J Clin Endocrinol Metab 103:115–124

    Article  PubMed  Google Scholar 

  84. Jiang H, He NY, Sun YH et al (2017) Altered spontaneous brain activity in Cushing’s disease: a resting-state functional MRI study. Clin Endocrinol (Oxf) 86:367–376

    Article  CAS  PubMed  Google Scholar 

  85. Zhang Y, Zhou T, Feng S et al (2021) The chronic effect of cortisol on orchestrating cerebral blood flow and brain functional connectivity: evidence from Cushing’s disease. Metabolism 115:154432

    Article  CAS  PubMed  Google Scholar 

  86. Lau WKW, Leung MK, Law ACK et al (2017) Moderating effects of cortisol on neural-cognitive association in cognitively normal elderly subjects. Front Aging Neurosci 9:163

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by The Scientific and Technological Research Council of Turkiye (Project No: 220S794).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hande Mefkure Ozkaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The present study was approved by the Medical Research Ethics Committee of Cerrahpasa Medical Faculty (03.05.2021/45781).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Supplementary file2 (MP4 2734 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulu, C., Koca, O., Icli, T.B. et al. Altered thalamic volume in patients with mild autonomous cortisol secretion: a structural brain MRI study. Neuroradiology 65, 1037–1051 (2023). https://doi.org/10.1007/s00234-023-03156-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-023-03156-3

Keywords

Navigation