Skip to main content

Advertisement

Log in

Early gray matter atrophy and neurological deficits in patients with carbon monoxide poisoning

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate early neurological deficits-related change patterns in gray matter (GM) volume in patients with carbon monoxide poisoning (COP) and GM volume differences between patients with and without delayed neurological sequelae (DNS) and those with and without T2 hyperintense lesions after COP.

Methods

Forty-one COP patients (24 patients with DNS) and 36 sex- and age-matched healthy controls (HC) were enrolled in this study. The neurological assessments were administered within 24 h after MRI scans. Voxel-based morphometry analysis was used to detect regional GM volume change.

Results

The COP group had statistically significant GM atrophy in the bilateral prefrontal and temporal lobes, anterior cingulate (ACC), thalamus, posterior cerebellum, and right hippocampus compared to the HC group. Atrophy in the left medial orbital superior frontal gyrus (SFG), bilateral ACC, and bilateral thalamus were related to lower Mini-Mental State Examination (MMSE) scores and higher Unified Parkinson’s Disease Rating Scale subsection III and neuro-psychiatric inventory scores. Atrophy in the hippocampus and posterior cerebellum were also related to decrease MMSE scores. The DNS subgroup had greater GM atrophy in the limbic system than the non-DNS subgroup. Compared to the subgroup without T2 hyperintense lesions, greater GM atrophy in the limbic system, motor and visual cortex, and default network was observed in the subgroup with T2 hyperintense lesions.

Conclusion

GM atrophy in the medial orbital SFG, ACC, thalamus, hippocampus, and posterior cerebellum is associated with early neurological deficits in patients with COP. Greater atrophy occurred in patients with DNS and those with T2 hyperintense lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mattiuzzi C, Lippi G (2020) Worldwide epidemiology of carbon monoxide poisoning. Hum Exp Toxicol 39(4):387–392. https://doi.org/10.1177/0960327119891214

    Article  CAS  Google Scholar 

  2. Jeon SB, Sohn CH, Seo DW, Oh BJ, Lim KS, Kang DW et al (2018) Acute brain lesions on magnetic resonance imaging and delayed neurological sequelae in carbon monoxide poisoning. JAMA Neurol 75(4):436–443. https://doi.org/10.1001/jamaneurol.2017.4618

    Article  Google Scholar 

  3. Lai CY, Huang YW, Tseng CH, Lin CL, Sung FC, Kao CH (2016) Patients with carbon monoxide poisoning and subsequent dementia: a population-based cohort study. Medicine (Baltimore) 95(1):e2418. https://doi.org/10.1097/MD.0000000000002418

    Article  Google Scholar 

  4. Huang YQ, Peng ZR, Huang FL, Yang AL (2020) Mechanism of delayed encephalopathy after acute carbon monoxide poisoning. Neural Regen Res 15(12):2286–2295. https://doi.org/10.4103/1673-5374.284995

    Article  CAS  Google Scholar 

  5. Beppu T (2014) The role of MR imaging in assessment of brain damage from carbon monoxide poisoning: a review of the literature. AJNR Am J Neuroradiol 35(4):625–631. https://doi.org/10.3174/ajnr.A3489

    Article  CAS  Google Scholar 

  6. Liu J, Si Z, Liu J, Lin Y, Yuan J, Xu S et al (2020) Clinical and imaging prognosis in patients with delayed encephalopathy after acute carbon monoxide poisoning. Behav Neurol 2020:1719360. https://doi.org/10.1155/2020/1719360

    Article  Google Scholar 

  7. Ernst A, Zibrak JD (1998) Carbon monoxide poisoning. N Engl J Med 339:1603–1608. https://doi.org/10.1056/NEJM199811263392206

    Article  CAS  Google Scholar 

  8. Zhang Y, Wang T, Lei J, Guo S, Wang S, Gu Y et al (2019) Cerebral damage after carbon monoxide poisoning: a longitudinal diffusional kurtosis imaging study. AJNR Am J Neuroradiol 40(10):1630–1637. https://doi.org/10.3174/ajnr.A6201

    Article  CAS  Google Scholar 

  9. Lapresle J, Fardeau M (1967) The central nervous system and carbon monoxide poisoning. II. Anatomical study of brain lesions following intoxication with carbon monixide (22 cases). Prog Brain Res 24:31–74. https://doi.org/10.1016/s0079-6123(08)60181-8

    Article  CAS  Google Scholar 

  10. Matsuda H (2016) MRI morphometry in Alzheimer’s disease. Ageing Res Rev 30:17–24. https://doi.org/10.1016/j.arr.2016.01.003

    Article  Google Scholar 

  11. Xu X, Han Q, Lin J, Wang L, Wu F, Shang H (2020) Grey matter abnormalities in Parkinson’s disease: a voxel-wise meta-analysis. Eur J Neurol 27(4):653–659. https://doi.org/10.1111/ene.14132

    Article  CAS  Google Scholar 

  12. Wang X, Cheng B, Luo Q, Qiu L, Wang S (2018) Gray matter structural alterations in social anxiety disorder: a voxel-based meta-analysis. Front Psychiatry 21(9):449. https://doi.org/10.3389/fpsyt.2018.00449

    Article  Google Scholar 

  13. Chen NC, Chang WN, Lui CC, Huang SH, Lee CC, Huang CW et al (2013) Detection of gray matter damage using brain MRI and SPECT in carbon monoxide intoxication: a comparison study with neuropsychological correlation. Clin Nucl Med 38(2):e53–e59. https://doi.org/10.1097/RLU.0b013e31827082a7

    Article  Google Scholar 

  14. Chou MC, Li JY, Lai PH (2020) Longitudinal gray matter changes of the pain matrix in patients with carbon monoxide intoxication: a voxel-based morphometry study. Eur J Radiol 126:108968. https://doi.org/10.1016/j.ejrad.2020.108968

    Article  Google Scholar 

  15. Chang CC, Hsu JL, Chang WN, Huang SH, Huang CW, Chang YT et al (2016) Metabolic covariant network in relation to nigrostriatal degeneration in carbon monoxide intoxication-related parkinsonism. Front Neurosci 3(10):187. https://doi.org/10.3389/fnins.2016.00187

    Article  Google Scholar 

  16. Chang CC, Hsiao IT, Huang SH, Lui CC, Yen TC, Chang WN (2015) 18F-FP-(+)-DTBZ positron emission tomography detection of monoaminergic deficient network in patients with carbon monoxide related parkinsonism. Eur J Neurol 22(5):845–52, e59–60. https://doi.org/10.1111/ene.12672.

  17. Chang CC, Chang WN, Lui CC, Wang JJ, Chen CF, Lee YC et al (2010) Longitudinal study of carbon monoxide intoxication by diffusion tensor imaging with neuropsychiatric correlation. J Psychiatry Neurosci 35(2):115–125. https://doi.org/10.1503/jpn.090057

    Article  Google Scholar 

  18. Kesler SR, Hopkins RO, Weaver LK, Blatter DD, Edge-Booth H, Bigler ED (2011) Verbal memory deficits associated with fornix atrophy in carbon monoxide poisoning. J Int Neuropsychol Soc 7(5):640–646. https://doi.org/10.1017/s1355617701005112

    Article  Google Scholar 

  19. Rose JJ, Wang L, Xu Q, McTiernan CF, Shiva S, Tejero J et al (2017) Carbon monoxide poisoning: pathogenesis, management, and future directions of therapy. Am J Respir Crit Care Med 195(5):596–606. https://doi.org/10.1164/rccm.201606-1275CI

    Article  CAS  Google Scholar 

  20. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113. https://doi.org/10.1016/0028-3932(71)90067-4

    Article  CAS  Google Scholar 

  21. Katzman R, Zhang MY, Ouang-Ya-Qu WZY, Liu WT, Yu E et al (1988) A Chinese version of the Mini-Mental State Examination; impact of illiteracy in a Shanghai dementia survey. J Clin Epidemiol 41(10):971–978. https://doi.org/10.1016/0895-4356(88)90034-0

    Article  CAS  Google Scholar 

  22. Li H, Jia J, Yang Z (2016) Mini-Mental State Examination in elderly Chinese: a population-based normative study. J Alzheimers Dis 7;53(2):487–496. https://doi.org/10.3233/JAD-160119.

  23. Piantadosi CA, Zhang J, Levin ED, Folz RJ, Schmechel DE (1997) Apoptosis and delayed neuronal damage after carbon monoxide poisoning in the rat. Exp Neurol 147(1):103–114. https://doi.org/10.1006/exnr.1997.6584

    Article  CAS  Google Scholar 

  24. Gale SD, Hopkins RO, Weaver LK, Bigler ED, Booth EJ, Blatter DD (1999) MRI, quantitative MRI, SPECT, and neuropsychological findings following carbon monoxide poisoning. Brain Inj 13(4):229–243. https://doi.org/10.1080/026990599121601

    Article  CAS  Google Scholar 

  25. Chen HL, Chen PC, Lu CH, Hsu NW, Chou KH, Lin CP et al (2013) Structural and cognitive deficits in chronic carbon monoxide intoxication: a voxel-based morphometry study. BMC Neurol 13:129. https://doi.org/10.1186/1471-2377-13-129

    Article  CAS  Google Scholar 

  26. Choi IS (1983) Delayed neurologic sequelae in carbon monoxide intoxication. Arch Neurol 40:433–435. https://doi.org/10.1001/archneur.1983.04050070063016

    Article  CAS  Google Scholar 

  27. Carlén M (2017) What constitutes the prefrontal cortex? Science 358(6362):478–482. https://doi.org/10.1126/science.aan8868

    Article  CAS  Google Scholar 

  28. Miller EK (2000) The prefrontal cortex and cognitive control. Nat Rev Neurosci 1(1):59–65. https://doi.org/10.1038/35036228

    Article  CAS  Google Scholar 

  29. George K, M Das J (2022) Neuroanatomy, thalamocortical radiations. In: StatPearls [Internet] Treasure Island (FL).

  30. Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46(7):831–844. https://doi.org/10.1016/j.cortex.2009.11.008

    Article  Google Scholar 

  31. Wu K, Liu M, Zhao G, He L, Tan Y (2020) Altered regional homogeneity in delayed encephalopathy after carbon monoxide poisoning: a resting-state fMRI study. Neurosci Lett 11(729):135002. https://doi.org/10.1016/j.neulet.2020.135002

    Article  CAS  Google Scholar 

  32. Wu K, Liu M, He L, Tan Y (2020) Abnormal degree centrality in delayed encephalopathy after carbon monoxide poisoning: a resting-state fMRI study. Neuroradiology 62(5):609–616. https://doi.org/10.1007/s00234-020-02369-0

    Article  Google Scholar 

  33. Jack CR Jr, Barkhof F, Bernstein MA, Cantillon M, Cole PE, Decarli C et al (2011) Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer’s disease. Alzheimers Dement 7(4):474-485.e4. https://doi.org/10.1016/j.jalz.2011.04.007

    Article  Google Scholar 

  34. Gale SD, Hopkins RO (2004) Effects of hypoxia on the brain: neuroimaging and neuropsychological findings following carbon monoxide poisoning and obstructive sleep apnea. J Int Neuropsychol Soc 10(1):60–71. https://doi.org/10.1017/S1355617704101082

    Article  Google Scholar 

  35. Sakaguchi Y, Sakurai Y (2020) Left-right functional difference of the rat dorsal hippocampus for short-term memory and long-term memory. Behav Brain Res 382:112478. https://doi.org/10.1016/j.bbr.2020.112478

    Article  Google Scholar 

  36. Catani M, Dell’acqua F, Thiebaut de Schotten M (2013) A revised limbic system model for memory, emotion and behaviour. Neurosci Biobehav Rev 37(8):1724–1737. https://doi.org/10.1016/j.neubiorev.2013.07.001

    Article  Google Scholar 

  37. Raichle ME (2015) The brain’s default mode network. Annu Rev Neurosci 38:433–447. https://doi.org/10.1146/annurev-neuro-071013-014030

    Article  CAS  Google Scholar 

  38. Chang CC, Chang WN, Lui CC, Huang SH, Lee CC, Chen C (2011) Clinical significance of the pallidoreticular pathway in patients with carbon monoxide intoxication. Brain 134(Pt 12):3632–3646. https://doi.org/10.1093/brain/awr287

    Article  Google Scholar 

  39. Chard DT, Jackson JS, Miller DH, Wheeler-Kingshott CA (2010) Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. J Magn Reson Imaging 32(1):223–228. https://doi.org/10.1002/jmri.22214

    Article  Google Scholar 

  40. Battaglini M, Jenkinson M, De Stefano N (2012) Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp 33(9):2062–2071. https://doi.org/10.1002/hbm.21344

    Article  Google Scholar 

  41. Buyukturkoglu K, Mormina E, De Jager PL, Riley CS, Leavitt VM (2019) The impact of MRI T1 hypointense brain lesions on cerebral deep gray matter volume measures in multiple sclerosis. J Neuroimaging 29(4):458–462. https://doi.org/10.1111/jon.12611

    Article  Google Scholar 

  42. Popescu V, Ran NC, Barkhof F, Chard DT, Wheeler-Kingshott CA, Vrenken H (2014) Accurate GM atrophy quantification in MS using lesion-filling with co-registered 2D lesion masks. Neuroimage Clin 4:366–373. https://doi.org/10.1016/j.nicl.2014.01.004

    Article  CAS  Google Scholar 

  43. Govindarajan KA, Datta S, Hasan KM, Choi S, Rahbar MH, Cofield SS et al (2015) MRI Analysis Center at Houston CombiRx Investigators Group Effect of in-painting on cortical thickness measurements in multiple sclerosis a large cohort study. Hum Brain Mapp 36(10):3749–3760. https://doi.org/10.1002/hbm.22875

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the patients and their caregivers for their time and commitment to this research. We are also grateful that the study was supported by research grants from the Natural Science Foundation of China (NO. 82160930) and the technology plan project of Lanzhou city (NO. 2020-ZD-71).

Funding

The research leading to these results received funding from the National Natural Science Foundation of China under Grant Agreement NO [82160930] and technology plan project of Lanzhou under Grant Agreement NO [2020-ZD-71]. Author Yanli Zhang has received research support from the two institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junqiang Lei.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the The Ethics Committee of The First Hospital of Lanzhou University (2018, LDYYLL2018-114).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, T., Wang, S. et al. Early gray matter atrophy and neurological deficits in patients with carbon monoxide poisoning. Neuroradiology 65, 245–256 (2023). https://doi.org/10.1007/s00234-022-03041-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-022-03041-5

Keywords

Navigation