Skip to main content

Advertisement

Log in

Recent advances in the longitudinal segmentation of multiple sclerosis lesions on magnetic resonance imaging: a review

  • Continuing Education
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a chronic autoimmune disease characterized by demyelinating lesions that are often visible on magnetic resonance imaging (MRI). Segmentation of these lesions can provide imaging biomarkers of disease burden that can help monitor disease progression and the imaging response to treatment. Manual delineation of MRI lesions is tedious and prone to subjective bias, while automated lesion segmentation methods offer objectivity and speed, the latter being particularly important when analysing large datasets. Lesion segmentation can be broadly categorised into two groups: cross-sectional methods, which use imaging data acquired at a single time-point to characterise MRI lesions; and longitudinal methods, which use imaging data from the same subject acquired at two or more different time-points to characterise lesions over time. The main objective of longitudinal segmentation approaches is to more accurately detect the presence of new MS lesions and the growth or remission of existing lesions, which may be effective biomarkers of disease progression and treatment response. This paper reviews articles on longitudinal MS lesion segmentation methods published over the past 10 years. These are divided into traditional machine learning methods and deep learning techniques. PubMed articles using longitudinal information and comparing fully automatic two time point segmentations in any step of the process were selected. Nineteen articles were reviewed. There is an increasing number of deep learning techniques for longitudinal MS lesion segmentation that are promising to help better understand disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

Data sharing is not applicable to this article as no new data were created or analysed in this study just reviewing previous literature research.

Code availability

This publication does not have any code related to its development and no code has been published.

References

  1. Igra MS, Paling D, Wattjes MP et al (2017) Multiple sclerosis update: use of MRI for early diagnosis, disease monitoring and assessment of treatment related complications. Br J Radiol 90:20160721

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thompson AJ, Banwell BL, Barkhof F et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17:162–173

    Article  PubMed  Google Scholar 

  3. Rovira À, on behalf of the MAGNIMS study group, Wattjes MP et al (2015) MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—clinical implementation in the diagnostic process. Nat Rev Neuro 11:471–482

    Article  Google Scholar 

  4. Molyneux PD (1998) Precision and reliability for measurement of change in MRI lesion volume in multiple sclerosis: a comparison of two computer assisted techniques. J Neurol Neurosurg Psychiatry 65:42–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sweeney EM, Shinohara RT, Shea CD et al (2013) Automatic lesion incidence estimation and detection in multiple sclerosis using multisequence longitudinal MRI. AJNR Am J Neuroradiol 34:68–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Calvi A, Haider L, Prados F, et al (2020) In vivo imaging of chronic active lesions in multiple sclerosis. Mult Scler 1352458520958589

  7. Sethi V, Nair G, Absinta M et al (2017) Slowly eroding lesions in multiple sclerosis. Mult Scler 23:464–472

    Article  PubMed  Google Scholar 

  8. Miller DH (1994) Magnetic resonance in monitoring the treatment of multiple sclerosis. Ann Neurol 36(Suppl):S91–S94

    Article  PubMed  Google Scholar 

  9. Weeda MM, Brouwer I, de Vos ML, et al (2019) Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation. NeuroImage: Clin 24 https://doi.org/10.1016/j.nicl.2019.102074

  10. Valverde S, Cabezas M, Roura E et al (2017) Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. Neuroimage 155:159–168

    Article  PubMed  Google Scholar 

  11. Gros C, de Leener B, Badji A et al (2019) Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage 184:901–915

    Article  PubMed  Google Scholar 

  12. Carass A, Roy S, Jog A et al (2017) Longitudinal multiple sclerosis lesion segmentation: Resource and challenge. Neuroimage 148:77–102

    Article  PubMed  Google Scholar 

  13. Cerri S, Puonti O, Meier DS et al (2021) A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis. Neuroimage 225:117471

    Article  PubMed  Google Scholar 

  14. Ganiler O, Oliver A, Diez Y et al (2014) A subtraction pipeline for automatic detection of new appearing multiple sclerosis lesions in longitudinal studies. Neuroradiology 56:363–374

    Article  PubMed  Google Scholar 

  15. Jain S, Ribbens A, Sima DM et al (2016) Two time point MS lesion segmentation in brain MRI: an expectation-maximization framework. Front Neurosci 10:1–11

    Article  Google Scholar 

  16. Salem M, Cabezas M, Valverde S et al (2018) A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis. NeuroImage: Clin 17:607–615

    Article  Google Scholar 

  17. Horsfield MA, Sala S, Neema M et al (2010) Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: application in multiple sclerosis. Neuroimage 50:446–455

    Article  PubMed  Google Scholar 

  18. Hickman SJ (2007) Optic nerve imaging in multiple sclerosis. J Neuroimaging 17(Suppl 1):42S-45S

    Article  PubMed  Google Scholar 

  19. Doyle A, Elliott C, Karimaghaloo Z, et al (2018) Lesion detection, segmentation and prediction in multiple sclerosis clinical trials. Brainlesion: Glioma, Mult Scler, Stroke Trauma Brain Inj 15–28

  20. Lladó X, Ganiler O, Oliver A et al (2012) Automated detection of multiple sclerosis lesions in serial brain MRI. Neuroradiology 54:787–807

    Article  PubMed  Google Scholar 

  21. Juntu J, Sijbers J, Dyck D, Gielen J (2008) Bias field correction for MRI images. Advances in Soft Computing. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 543–551

    Google Scholar 

  22. Tustison N, Gee J (2010) N4ITK: Nick’s N3 ITK implementation for MRI bias field correction. The Insight J https://doi.org/10.54294/jculxw

  23. Freire PGL, Ferrari RJ (2016) Automatic iterative segmentation of multiple sclerosis lesions using Student’s t mixture models and probabilistic anatomical atlases in FLAIR images. Comput Biol Med 73:10–23

    Article  PubMed  Google Scholar 

  24. Leung KK, Ridgway GR, Ourselin S et al (2012) Consistent multi-time-point brain atrophy estimation from the boundary shift integral. Neuroimage 59:3995–4005

    Article  PubMed  Google Scholar 

  25. Reuter M, Schmansky NJ, Rosas HD, Fischl B (2012) Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61:1402–1418

    Article  PubMed  Google Scholar 

  26. Alexa M (2002) Linear combination of transformations. ACM Trans Graph 21:380–387

    Article  Google Scholar 

  27. Brett M, Johnsrude IS, Owen AM (2002) The problem of functional localization in the human brain. Nat Rev Neurosci 3:243–249

    Article  PubMed  CAS  Google Scholar 

  28. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155

    Article  PubMed  PubMed Central  Google Scholar 

  29. Eskildsen SF, Coupé P, Fonov V et al (2012) BEaST: brain extraction based on nonlocal segmentation technique. Neuroimage 59:2362–2373

    Article  PubMed  Google Scholar 

  30. Iglesias JE, Liu C-Y, Thompson PM, Tu Z (2011) Robust brain extraction across datassets and comparison with publicly available methods. IEEE Trans Med Imaging 30:1617–1634

    Article  PubMed  Google Scholar 

  31. Isensee F, Schell M, Pflueger I et al (2019) Automated brain extraction of multisequence MRI using artificial neural networks. Hum Brain Mapp 40:4952–4964

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bosc M, Heitz F, Armspach JP et al (2003) Automatic change detection in multimodal serial MRI: application to multiple sclerosis lesion evolution. Neuroimage 20:643–656

    Article  PubMed  Google Scholar 

  33. Commowick O, Istace A, Kain M et al (2018) Objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure. Sci Rep 8:13650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lesjak Ž, Pernuš F, Likar B, Špiclin Ž (2016) Validation of white-matter lesion change detection methods on a novel publicly available MRI image Database. Neuroinformatics 14:403–420

    Article  PubMed  Google Scholar 

  35. Mori S, Oishi K, Jiang H et al (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40:570–582

    Article  PubMed  Google Scholar 

  36. Oishi K, Zilles K, Amunts K et al (2008) Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage 43:447–457

    Article  PubMed  Google Scholar 

  37. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156

    Article  PubMed  CAS  Google Scholar 

  38. Sled JG, Bruce Pike G (1998) Understanding intensity non-uniformity in MRI. Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 614–622

  39. Elliott C, Arnold DL, Collins DL, Arbel T (2013) Temporally consistent probabilistic detection of new multiple sclerosis lesions in brain MRI. IEEE Trans Med Imaging 32:1490–1503

    Article  PubMed  Google Scholar 

  40. Battaglini M, Rossi F, Grove RA et al (2014) Automated identification of brain new lesions in multiple sclerosis using subtraction images. J Magn Reson Imaging 39:1543–1549

    Article  PubMed  Google Scholar 

  41. Roy S, Carass A, Prince JL, Pham DL (2015) Longitudinal patch-based segmentation of multiple sclerosis white matter lesions. Machine Learning for Medical Imaging 9352:194–202

    Article  Google Scholar 

  42. Simões R, Slump C (2011) Change detection and classification in brain MR images using change vector analysis. Proceedings of the Annual International Conference of the IEEE Eng Med Bio Soc EMBS 7803–7807

  43. Cabezas M, Corral JF, Oliver A et al (2016) Improved automatic detection of new t2 lesions in multiple sclerosis using deformation fields. AJNR Am J Neuroradiol 37:1816–1823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Schmidt P, Pongratz V, Küster P et al (2019) Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging. NeuroImage: Clin 23:101849

    Article  Google Scholar 

  45. Birenbaum A, Greenspan H (2017) Multi-view longitudinal CNN for multiple sclerosis lesion segmentation. Eng Appl Artif Intell 65:111–118

    Article  Google Scholar 

  46. Fartaria MJ, Kober T, Granziera C, Bach Cuadra M (2019) Longitudinal analysis of white matter and cortical lesions in multiple sclerosis. NeuroImage: Clin 23:101938

    Article  Google Scholar 

  47. Salem M, Valverde S, Cabezas M, et al (2020) A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis. NeuroImage: Clin 25 https://doi.org/10.1016/j.nicl.2019.102149

  48. Balakrishnan G, Zhao A, Sabuncu MR et al (2019) VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans Med Imaging 38:1788–1800

    Article  Google Scholar 

  49. Denner S, Khakzar A, Sajid M, et al (2020) Spatio-temporal learning from longitudinal data for multiple sclerosis lesion segmentation. In: BrainLes Workshop in MICCAI2020

  50. Zhang H, Valcarcel AM, Bakshi R et al (2019) Multiple sclerosis lesion segmentation with tiramisu and 2.5D stacked slices. Med Image Comput Comput Assist Interv 11766:338–346

    PubMed  PubMed Central  Google Scholar 

  51. Krüger J, Opfer R, Gessert N et al (2020) Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks. NeuroImage: Clin 28:102445

    Article  Google Scholar 

  52. McKinley R, Wepfer R, Grunder L et al (2020) Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence. NeuroImage: Clin 25:102104

    Article  Google Scholar 

  53. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp 234–241

  54. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2016) Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  55. Gessert N, Krüger J, Opfer R et al (2020) Multiple sclerosis lesion activity segmentation with attention-guided two-path CNNs. Comput Med Imaging Graph 84:101772

    Article  PubMed  Google Scholar 

  56. Giovannoni G, Turner B, Gnanapavan S et al (2015) Is it time to target no evident disease activity (NEDA) in multiple sclerosis? Mult Scler Relat Disord 4:329–333

    Article  PubMed  Google Scholar 

  57. Prados F, Cardoso MJ, Kanber B et al (2016) A multi-time-point modality-agnostic patch-based method for lesion filling in multiple sclerosis. Neuroimage 139:376–384

    Article  PubMed  Google Scholar 

  58. Battaglini M, Jenkinson M, De Stefano N (2012) Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp 33:2062–2071

    Article  PubMed  Google Scholar 

  59. Akkus Z, Galimzianova A, Hoogi A et al (2017) Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging 30:449–459

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hashemi SR (2017) Asymmetric loss functions and deep densely connected networks for highly imbalanced medical image segmentation: application to multiple sclerosis lesion detection. Physiol Behav 176:139–148

    Google Scholar 

  61. Goodkin O, Prados F, Vos SB et al (2021) FLAIR-only joint volumetric analysis of brain lesions and atrophy in clinically isolated syndrome (CIS) suggestive of multiple sclerosis. Neuroimage Clin 29:102542

    Article  PubMed  CAS  Google Scholar 

  62. Pemberton HG, Goodkin O, Prados F et al (2021) Automated quantitative MRI volumetry reports support diagnostic interpretation in dementia: a multi-rater, clinical accuracy study. Eur Radiol 31:5312–5323

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by M. D.-H., J. C.-R. and F.P. The first draft of the manuscript was written by M.D.-H., E. M.-H. and F.P., and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marcos Diaz-Hurtado.

Ethics declarations

Conflict of interest

M.D.-H., E.M.-H., J.C.-R., B.K. and F.P. have nothing to disclose. E.S received travel reimbursement from Sanofi. S.L. received compensation for consulting services and speaker honoraria from Biogen Idec, Novartis, TEVA, Genzyme, Sanofi and Merck.

Ethical approval

This study has been approved by the Ethics Committee of the University Oberta de Catalunya (UOC) stating that this research does not include human subject participation or any processing of personal data and the research fulfils current legislation on data protection.

Informed consent

This research does not include human subject participation or any processing of personal data.

Consent for publication

All authors consent for publication of this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz-Hurtado, M., Martínez-Heras, E., Solana, E. et al. Recent advances in the longitudinal segmentation of multiple sclerosis lesions on magnetic resonance imaging: a review. Neuroradiology 64, 2103–2117 (2022). https://doi.org/10.1007/s00234-022-03019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-022-03019-3

Keywords

Navigation