Skip to main content

Advertisement

Log in

Magnetic susceptibility in the deep gray matter may be modulated by apolipoprotein E4 and age with regional predilections: a quantitative susceptibility mapping study

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To examine the relationship between apolipoprotein E gene (APOE) mutation status and iron accumulation in the deep gray matter of subjects with cognitive symptoms using quantitative susceptibility mapping (QSM).

Methods

A total of 105 patients with cognitive symptoms were enrolled. QSM data were generated from 3D gradient-echo data using an STI Suite algorithm. A region of interest-based analysis with QSM was performed in the deep gray matter. Differences between APOE4 carriers and non-carriers were assessed by analysis of covariance. Multiple regression analysis was performed to identify the factors associated with magnetic susceptibility.

Results

Clinical characters such as age, education, MMSE, vascular risk burden, and systolic blood pressure differ between APOE4 carrier and non-carrier groups. The APOE4 carrier group had higher magnetic susceptibility values than the non-carrier group, with significant differences in the caudate (p = 0.004), putamen (p < 0.0001), and globus pallidus (p < 0.0001) which imply higher iron accumulation. In a multiple regression analysis, APOE4 status was found to be a predictor of magnetic susceptibility value in the globus pallidus (p = 0.03); age for magnetic susceptibility value in the caudate nucleus (p = 0.0064); and age and hippocampal atrophy for magnetic susceptibility value in the putamen (p < 0.05).

Conclusion

Our study demonstrates that magnetic susceptibility in globus pallidus is related to APOE4 status while those of caudate and putamen are related to other factors including age. It suggests that brain iron accumulation in the deep gray matter is modulated by APOE4 and age with differential regional predilection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Due to the nature of this research, participants of this study did not agree for their data to be shared publicly, so supporting data is not available.

Code availability

Code sharing is not applicable to this article as no codes were generated during the current study.

Abbreviations

AD:

Alzheimer’s disease

CSF:

Cerebrospinal fluid

MCI:

Mild cognitive impairment

SCI:

Subjective cognitive impairment

EOAD:

Early-onset Alzheimer’s disease

MRI:

Magnetic resonance imaging

QSM:

Quantitative susceptibility mapping

APOE :

Apolipoprotein E gene

References

  1. Angelova DM, Brown DR (2015) Iron, aging, and neurodegeneration. Metals 5(4):2070–2092

    Article  Google Scholar 

  2. Aquino D, Bizzi A, Grisoli M, Garavaglia B, Bruzzone MG, Nardocci N, Savoiardo M, Chiapparini L (2009) Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 252(1):165–172

    Article  PubMed  Google Scholar 

  3. Ayton S, Faux NG, Bush AI (2017) Association of cerebrospinal fluid ferritin level with preclinical cognitive decline in APOE-ε4 carriers. JAMA Neurol 74(1):122–125

    Article  PubMed  Google Scholar 

  4. Ayton S, Faux NG, Bush AI, Weiner MW, Aisen P, Petersen R, Jack CR Jr, Jagust W, Trojanowki JQ, Toga AW (2015) Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat Commun 6:6760

    Article  CAS  PubMed  Google Scholar 

  5. Bartzokis G, Lu PH, Geschwind DH, Tingus K, Huang D, Mendez MF, Edwards N, Mintz J (2007) Apolipoprotein E affects both myelin breakdown and cognition: implications for age-related trajectories of decline into dementia. Biol Psychiatry 62(12):1380–1387. https://doi.org/10.1016/j.biopsych.2007.03.024

    Article  CAS  PubMed  Google Scholar 

  6. Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan EV, Adalsteinsson E (2012) MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. Neuroimage 59(3):2625–2635

    Article  CAS  PubMed  Google Scholar 

  7. Blasco G, Puig J, Daunis-i-Estadella J, Molina X, Xifra G, Fernández-Aranda F, Pedraza S, Ricart W, Portero-Otín M, Fernández-Real JM (2014) Brain iron overload, insulin resistance, and cognitive performance in obese subjects: a preliminary MRI case-control study. Diabetes Care 37(11):3076–3083

    Article  CAS  PubMed  Google Scholar 

  8. Bulk M, van der Weerd L, Breimer W, Lebedev N, Webb A, Goeman JJ, Ward RJ, Huber M, Oosterkamp TH, Bossoni L (2018) Quantitative comparison of different iron forms in the temporal cortex of Alzheimer patients and control subjects. Sci Rep 8(1):1–11

    Article  CAS  Google Scholar 

  9. Chen W, Gauthier SA, Gupta A, Comunale J, Liu T, Wang S, Pei M, Pitt D, Wang Y (2014) Quantitative susceptibility mapping of multiple sclerosis lesions at various ages. Radiology 271(1):183–192

    Article  PubMed  Google Scholar 

  10. Deh K, Kawaji K, Bulk M, Van Der Weerd L, Lind E, Spincemaille P, McCabe Gillen K, Van Auderkerke J, Wang Y, Nguyen TD (2019) Multicenter reproducibility of quantitative susceptibility mapping in a gadolinium phantom using MEDI+ 0 automatic zero referencing. Magn Reson Med 81(2):1229–1236

    Article  CAS  PubMed  Google Scholar 

  11. Duyn JH, Schenck J (2017) Contributions to magnetic susceptibility of brain tissue. NMR Biomed 30(4). https://doi.org/10.1002/nbm.3546

  12. Ghadery C, Pirpamer L, Hofer E, Langkammer C, Petrovic K, Loitfelder M, Schwingenschuh P, Seiler S, Duering M, Jouvent E (2015) R2* mapping for brain iron: associations with cognition in normal aging. Neurobiol Aging 36(2):925–932

    Article  CAS  PubMed  Google Scholar 

  13. Hagemeier J, Yeh EA, Brown MH, Bergsland N, Dwyer MG, Carl E, Weinstock-Guttman B, Zivadinov R (2013) Iron content of the pulvinar nucleus of the thalamus is increased in adolescent multiple sclerosis. Mult Scler J 19(5):567–576

    Article  CAS  Google Scholar 

  14. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3(1):41–51

    Article  CAS  PubMed  Google Scholar 

  15. Kagerer SM, van Bergen JM, Li X, Quevenco FC, Gietl AF, Studer S, Treyer V, Meyer R, Kaufmann PA, Nitsch RM (2020) APOE4 moderates effects of cortical iron on synchronized default mode network activity in cognitively healthy old-aged adults. Alzheimers Dement (Amst) 12(1):1–11

    Google Scholar 

  16. Langkammer C, Schweser F, Krebs N, Deistung A, Goessler W, Scheurer E, Sommer K, Reishofer G, Yen K, Fazekas F (2012) Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage 62(3):1593–1599

    Article  PubMed  Google Scholar 

  17. Lee J-h, Lee MS (2019) Brain iron accumulation in atypical parkinsonian syndromes: in vivo MRI evidences for distinctive patterns. Front Neurol 10:74

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee J-Y, Cho E, Kim T-Y, Kim D-K, Palmiter RD, Volitakis I, Kim JS, Bush AI, Koh J-Y (2010) Apolipoprotein E ablation decreases synaptic vesicular zinc in the brain. Biometals 23(6):1085–1095

    Article  CAS  PubMed  Google Scholar 

  19. Lee JS, Kim C, Shin JH, Cho H, Shin DS, Kim N, Kim HJ, Kim Y, Lockhart SN, Na DL, Seo SW, Seong JK (2018) Machine learning-based individual assessment of cortical atrophy pattern in Alzheimer’s disease spectrum: development of the classifier and longitudinal evaluation. Sci Rep 8(1):4161. https://doi.org/10.1038/s41598-018-22277-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li W, Wu B, Liu C (2011) Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. Neuroimage 55(4):1645–1656

    Article  PubMed  Google Scholar 

  21. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7):939–939

    Article  CAS  PubMed  Google Scholar 

  22. Miyata M, Smith JD (1996) Apolipoprotein E allele–specific antioxidant activity and effects on cytotoxicity by oxidative insults and β–amyloid peptides. Nat Genet 14(1):55–61

    Article  CAS  PubMed  Google Scholar 

  23. Montagne A, Nation DA, Sagare AP, Barisano G, Sweeney MD, Chakhoyan A, Pachicano M, Joe E, Nelson AR, D’Orazio LM, Buennagel DP, Harrington MG, Benzinger TLS, Fagan AM, Ringman JM, Schneider LS, Morris JC, Reiman EM, Caselli RJ, Chui HC, Tcw J, Chen Y, Pa J, Conti PS, Law M, Toga AW, Zlokovic BV (2020) APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature 581(7806):71–76. https://doi.org/10.1038/s41586-020-2247-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moon W-J, Kim H-J, Roh HG, Choi JW, Han S-H (2012) Fluid-attenuated inversion recovery hypointensity of the pulvinar nucleus of patients with Alzheimer disease: its possible association with iron accumulation as evidenced by the T2* map. Korean J Radiol 13(6):674–683

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moon WJ, Lim C, Ha IH, Kim Y, Moon Y, Kim HJ, Han SH (2020) Hippocampal blood-brain barrier permeability is related to the APOE4 mutation status of elderly individuals without dementia. J Cereb Blood Flow Metab:271678X20952012. https://doi.org/10.1177/0271678X20952012

  26. Moon Y, Han S-H, Moon W-J (2016) Patterns of brain iron accumulation in vascular dementia and Alzheimer’s dementia using quantitative susceptibility mapping imaging. J Alzheimer’s Dis 51(3):737–745

    Article  CAS  Google Scholar 

  27. Moon Y, Han SH, Moon WJ (2016) Patterns of brain iron accumulation in vascular dementia and Alzheimer’s dementia using quantitative susceptibility mapping imaging. J Alzheimers Dis 51(3):737–745. https://doi.org/10.3233/JAD-151037

    Article  CAS  PubMed  Google Scholar 

  28. Nnah IC, Wessling-Resnick M (2018) Brain iron homeostasis: a focus on microglial iron. Pharmaceuticals 11(4):129

    Article  CAS  PubMed Central  Google Scholar 

  29. Özbay PS, Deistung A, Feng X, Nanz D, Reichenbach JR, Schweser F (2017) A comprehensive numerical analysis of background phase correction with V-SHARP. NMR Biomed 30(4):e3550

    Article  Google Scholar 

  30. Park M, Moon W-J, Moon Y, Choi JW, Han S-H, Wang Y (2018) Region-specific susceptibility change in cognitively impaired patients with diabetes mellitus. PloS One 13(10):e0205797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Park M, Moon Y, Han SH, Kim HK, Moon WJ (2019) Myelin loss in white matter hyperintensities and normal-appearing white matter of cognitively impaired patients: a quantitative synthetic magnetic resonance imaging study. Eur Radiol 29(9):4914–4921. https://doi.org/10.1007/s00330-018-5836-x

    Article  PubMed  Google Scholar 

  32. Peng GP, Feng Z, He FP, Chen ZQ, Liu XY, Liu P, Luo BY (2015) Correlation of hippocampal volume and cognitive performances in patients with either mild cognitive impairment or Alzheimer’s disease. CNS Neurosci Ther 21(1):15–22

    Article  PubMed  Google Scholar 

  33. Persson N, Wu J, Zhang Q, Liu T, Shen J, Bao R, Ni M, Liu T, Wang Y, Spincemaille P (2015) Age and sex related differences in subcortical brain iron concentrations among healthy adults. Neuroimage 122:385–398

    Article  PubMed  Google Scholar 

  34. Peters DG, Connor JR, Meadowcroft MD (2015) The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer’s disease: two sides of the same coin. Neurobiol Dis 81:49–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56(3):303–308

    Article  CAS  PubMed  Google Scholar 

  36. Schipper HM (2004) Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res Rev 3(3):265–301

    Article  CAS  PubMed  Google Scholar 

  37. Schweser F, Deistung A, Lehr BW, Reichenbach JR (2011) Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage 54(4):2789–2807

    Article  PubMed  Google Scholar 

  38. Sullivan EV, Adalsteinsson E, Rohlfing T, Pfefferbaum A (2009) Relevance of iron deposition in deep gray matter brain structures to cognitive and motor performance in healthy elderly men and women: exploratory findings. Brain Imaging Behav 3(2):167–175

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thomas GEC, Leyland LA, Schrag A-E, Lees AJ, Acosta-Cabronero J, Weil RS (2020) Brain iron deposition is linked with cognitive severity in Parkinson’s disease. J Neurol Neurosurg Psychiatry 91(4):418–425

    Article  PubMed  Google Scholar 

  40. Van Bergen J, Li X, Hua J, Schreiner S, Steininger S, Quevenco F, Wyss M, Gietl A, Treyer V, Leh S (2016) Colocalization of cerebral iron with amyloid beta in mild cognitive impairment. Sci Rep 6:35514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, Lindley RI, O’Brien JT, Barkhof F, Benavente OR (2013) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12(8):822–838

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wei K, Tran T, Chu K, Borzage MT, Braskie MN, Harrington MG, King KS (2019) White matter hypointensities and hyperintensities have equivalent correlations with age and CSF beta-amyloid in the nondemented elderly. Brain Behav 9(12):e01457. https://doi.org/10.1002/brb3.1457

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xu H, Perreau VM, Dent KA, Bush AI, Finkelstein DI, Adlard PA (2016) Iron regulates apolipoprotein E expression and secretion in neurons and astrocytes. J Alzheimer’s Dis 51(2):471–487

    Article  CAS  Google Scholar 

  45. Yamada N, Imakita S, Sakuma T, Takamiya M (1996) Intracranial calcification on gradient-echo phase image: depiction of diamagnetic susceptibility. Radiology 198(1):171–178

    Article  CAS  PubMed  Google Scholar 

  46. Yang Q, Zhou L, Liu C, Liu D, Zhang Y, Li C, Shang Y, Wei X, Li C, Wang J (2018) Brain iron deposition in type 2 diabetes mellitus with and without mild cognitive impairment—an in vivo susceptibility mapping study. Brain Imaging Behav 12(5):1479–1487

    Article  PubMed  Google Scholar 

  47. Youn YC, Lim YK, Han S-H, Van Giau V, Lee M-K, Park K-Y, Kim S, Bagyinszky E, An SSA, Kim HR (2017) Apolipoprotein ε7 allele in memory complaints: insights through protein structure prediction. Clin Interv Aging 12:1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863

    Article  CAS  PubMed  Google Scholar 

  49. Zhu W-z, Zhong W-d, Wang W, Zhan C-j, Wang C-y, Qi J-p, Wang J-z, Lei T (2009) Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology 253(2):497–504

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2017R1A2B4010634) and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant No. HI18C1038).

Author information

Authors and Affiliations

Authors

Contributions

Y. Yim and W. Moon took full responsibility for the conception and design of the study, the collection, analysis, and interpretation of the data, and the drafting of the manuscript. JD Choi and J. H. Cho were in charge of data collection and analysis. Y. Moon and S. H. Han helped with the design of the study and critical revision of the manuscript for important intellectual content. Y. Moon and S. H. Han were in charge of data collection and helped study design. All authors approved the final version of the manuscript to be published and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Won-Jin Moon.

Ethics declarations

Conflicts of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Ethics approval

Institutional review board approval from Konkuk University Medical Center was obtained.

Consent to participate

Written informed consent was waived by the institutional review board.

Consent for publication

I give my consent for the publication of identifiable details, which can include figures and data to be published in Neuroradiology.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yim, Y., Choi, J.D., Cho, J.H. et al. Magnetic susceptibility in the deep gray matter may be modulated by apolipoprotein E4 and age with regional predilections: a quantitative susceptibility mapping study. Neuroradiology 64, 1331–1342 (2022). https://doi.org/10.1007/s00234-021-02859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-021-02859-9

Keywords

Navigation