Skip to main content

Advertisement

Log in

Transradial versus transfemoral access for acute stroke endovascular thrombectomy: a 4-year experience in a high-volume center

  • Interventional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To compare clinical outcomes and safety of transradial (TRA) versus transfemoral access (TFA) for endovascular mechanical thrombectomy in acute stroke patients.

Methods

Retrospective analysis of 832 consecutive patients with acute stroke undergoing interventional thrombectomy using TRA (n = 64) or TFA (n = 768).

Results

Direct TFA failures occurred in 36 patients, 18 of which underwent crossover TFA to TRA, while direct TRA failures occurred in 2 patients having both crossovers to TFA. Successful catheterization was achieved in 96.8% (62/64) and 95.3% (732/768) of patients undergoing direct TRA and direct TFA, respectively, without significant differences. The median (IQR) catheterization time was 10 (8–16) min in the direct TRA group and 15 (10–20) in the direct TFA group (P < 0.001). This difference was also significant in the subgroup of anterior circulation strokes and in patients younger and older than 80 years of age. The majority of procedures yielded thrombolysis in cerebral infarction grade 2b/2c/3 revascularization in patients undergoing direct TRA (88.5%) and direct TFA (90.8%), without statistically significant differences. The median (IQR) puncture to recanalization time was 37 (24–58) min for the direct TRA group and 42 (28–70) min for the direct TFA group. Significant differences in access site complications, symptomatic ICH, and mRS score 0–2 at 90 days between both TRA and TFA accesses were not found.

Conclusions

TRA is not inferior to TFA in the probability of catheterization, times of catheterization and revascularization, and other clinical outcomes for mechanical thrombectomy in acute stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Study data are available from the corresponding author upon request.

Code availability

The software applied was R statistical program version 4.0.2 for Windows.

References

  1. Kaufmann TJ, Huston J 3rd, Mandrekar JN, Schleck CD, Thielen KR, Kallmes DF (2007) Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology 243:812–819. https://doi.org/10.1148/radiol.2433060536

    Article  PubMed  Google Scholar 

  2. Campeau L (1989) Percutaneous radial artery approach for coronary angiography. Catheter Cardiovasc Diagn 16:3–7. https://doi.org/10.1002/ccd.1810160103

    Article  CAS  PubMed  Google Scholar 

  3. Snelling BM, Sur S, Shah SS, Marlow MM, Cohen MG, Peterson EC (2018) Transradial access: lessons learned from cardiology. J Neurointerv Surg 10:487–492. https://doi.org/10.1136/neurintsurg-2017-013295

    Article  PubMed  Google Scholar 

  4. Sousa-Uva M, Neumann FJ, Ahlsson A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet JP, Falk V, Head SJ, Jüni P, Kastrati A, Koller A, Kristensen SD, Niebauer J, Richter DJ, Seferovic PM, Sibbing D, Stefanini GG, Windecker S, Yadav R, Zembala MO, ESC Scientific Document Group (2019) 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur J Cardiothorac Surg 55:4–90. https://doi.org/10.1093/ejcts/ezy289

    Article  PubMed  Google Scholar 

  5. Matsumoto Y, Hokama M, Nagashima H, Orz Y, Toriyama T, Hongo K, Kobayashi S (2000) Transradial approach for selective cerebral angiography: technical note. Neurol Res 22:605–608. https://doi.org/10.1080/01616412.2000.11740727

    Article  CAS  PubMed  Google Scholar 

  6. Park JH, Kim DY, Kim JW, Park YS, Seung WB (2013) Efficacy of transradial cerebral angiography in the elderly. J Korean Neurosurg Soc 53:213–217. https://doi.org/10.3340/jkns.2013.53.4.213

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brunet MC, Chen SH, Sur S, McCarthy DJ, Snelling B, Yavagal DR, Starke RM, Peterson EC (2019) Distal transradial access in the anatomical snuffbox for diagnostic cerebral angiography. J Neurointerv Surg 11:710–713. https://doi.org/10.1136/neurintsurg-2019-014718

    Article  PubMed  Google Scholar 

  8. Snelling BM, Sur S, Shah SS, Khandelwal P, Caplan J, Haniff R, Starke RM, Yavagal DR, Peterson EC (2018) Transradial cerebral angiography: techniques and outcomes. J Neurointerv Surg 10:874–881. https://doi.org/10.1136/neurintsurg-2017-013584

    Article  PubMed  Google Scholar 

  9. Jo KW, Park SM, Kim SD, Kim SR, Baik MW, Kim YW (2010) Is transradial cerebral angiography feasible and safe? A single center’s experience. J Korean Neurosurg Soc 47:332–337. https://doi.org/10.3340/jkns.2010.47.5.332

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pons RB, Caamaño IR, Chirife OS, Aja L, Aixut S, de Miquel MÁ (2020) Transradial access for diagnostic angiography and interventional neuroradiology procedures: a four-year single-center experience. Interv Neuroradiol 26:506–513. https://doi.org/10.1177/1591019920925711

    Article  PubMed  PubMed Central  Google Scholar 

  11. Munich SA, Vakharia K, McPheeters MJ, Waqas M, Tso MK, Levy EI, Snyder KV, Siddiqui AH, Davies JM (2020) Transition to transradial access for mechanical thrombectomy—lessons learned and comparison to transfemoral access in a single-center case series. Oper Neurosurg 19:701–707. https://doi.org/10.1093/ons/opaa230

    Article  Google Scholar 

  12. Sur S, Snelling B, Khandelwal P, Caplan JM, Peterson EC, Starke RM, Yavagal DR (2017) Transradial approach for mechanical thrombectomy in anterior circulation large-vessel occlusion. Neurosurg Focus 42:E13. https://doi.org/10.3171/2017.1.FOCUS16525

    Article  PubMed  Google Scholar 

  13. Siddiqui AH, Waqas M, Neumaier J, Zhang JF, Dossani RH, Cappuzzo JM, Van Coevering III RJ, Rai HH, Monteiro A, Sonig A, Davies JM, Snyder KV, Levy EI (2021) Radial first or patient first: a case series and meta-analysis of transradial versus transfemoral access for acute ischemic stroke intervention. J Neurointerv Surg:2020-017225. https://doi.org/10.1136/neurintsurg-2020-017225

  14. Phillips TJ, Crockett MT, Selkirk GD, Kabra R, Chiu AHY, Singh T, Phatouros C, McAuliffe W (2021) Transradial versus transfemoral access for anterior circulation mechanical thrombectomy: analysis of 375 consecutive cases. Stroke Vasc Neurol 6:207–213. https://doi.org/10.1136/svn-2020-000624

    Article  PubMed  Google Scholar 

  15. Saver JL, Jahan R, Levy EI, Jovin TG, Baxter B, Nogueira RG, Clark W, Budzik R, Zaidat OO, Trialists SWIFT (2012) Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. Lancet 380:1241–12499. https://doi.org/10.1016/S0140-6736(12)61384-1

    Article  PubMed  Google Scholar 

  16. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, Yan B, Dowling RJ, Parsons MW, Oxley TJ et al (2015) Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 372:1009–1018. https://doi.org/10.1056/NEJMoa1414792

    Article  CAS  PubMed  Google Scholar 

  17. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, San Román L, Serena J, Abilleira S, Ribó M et al (2015) Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 372:2296–2306. https://doi.org/10.1056/NEJMoa1503780

    Article  CAS  PubMed  Google Scholar 

  18. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL et al (2015) Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 372:1019–1030. https://doi.org/10.1056/NEJMoa1414905

    Article  CAS  PubMed  Google Scholar 

  19. Hoffman H, Jalal MS, Masoud HE, Pons RB, Rodriguez Caamaño I, Khandelwal P, Prakash T, Gould GC (2021) Distal transradial access for diagnostic cerebral angiography and neurointervention: systematic review and meta-analysis. AJNR Am J Neuroradiol 42:888–895. https://doi.org/10.3174/ajnr.A7074

    Article  CAS  PubMed  Google Scholar 

  20. Kwok CS, Rashid M, Fraser D, Nolan J, Mamas M (2015) Intra-arterial vasodilators to prevent radial artery spasm: a systematic review and pooled analysis of clinical studies. Cardiovasc Revasc Med 16:484–490. https://doi.org/10.1016/j.carrev.2015.08.008

    Article  PubMed  Google Scholar 

  21. Dahal K, Sharma S, Yousuf A, Lee J, Azrin M, Jimenez E, Modi K, Tandon N (2018) A comparison of standard versus low dose heparin on access-related complications after coronary angiography through radial access: a meta-analysis of randomized controlled trials. Cardiovasc Revasc Med 19:575–579. https://doi.org/10.1016/j.carrev.2017.10.018

    Article  PubMed  Google Scholar 

  22. Hahalis GN, Leopoulou M, Tsigkas G, Xanthopoulou I, Patsilinakos S, Patsourakos NG, Ziakas A, Kafkas N, Koutouzis M, Tsiafoutis I et al (2018) Multicenter randomized evaluation of high versus standard heparin dose on incident radial arterial occlusion after transradial coronary angiography: the spirit of Artemis study. JACC Cardiovasc Interv 11:2241–2250. https://doi.org/10.1016/j.jcin.2018.08.009

    Article  PubMed  Google Scholar 

  23. Barranco Pons R, Rodríguez Caamaño I, de Dios Lascuevas M (2020) Radial access for neurointerventions. Vasc Endovasc Rev 3:e13. https://doi.org/10.15420/ver.2020.13

    Article  Google Scholar 

  24. Zussman BM, Tonetti DA, Stone J, Brown M, Desai SM, Gross BA, Jadhav A, Jovin TG, Jankowitz BT (2019) Maturing institutional experience with the transradial approach for diagnostic cerebral arteriography: overcoming the learning curve. J Neurointerv Surg 11:1235–1238. https://doi.org/10.1136/neurintsurg-2019-014920

    Article  PubMed  Google Scholar 

  25. Joshi KC, Beer-Furlan A, Crowley RW, Chen M, Munich SA (2020) Transradial approach for neurointerventions: a systematic review of the literature. J Neurointerv Surg 12:886–892. https://doi.org/10.1136/neurintsurg-2019-015764

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jolly SS, Yusuf S, Cairns J, Niemelä K, Xavier D, Widimsky P, Budaj A, Niemelä M, Valentin V, Lewis BS et al (2011) Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet 377:1409–1420. https://doi.org/10.1016/S0140-6736(11)60404-2

    Article  PubMed  Google Scholar 

  27. Singh S, Singh M, Grewal N, Khosla S (2016) Transradial vs transfemoral percutaneous coronary intervention in ST-segment elevation myocardial infarction: a systemic review and meta-analysis. Can J Cardiol 32:777–790. https://doi.org/10.1016/j.cjca.2015.08.019

    Article  PubMed  Google Scholar 

  28. Agostoni P, Biondi-Zoccai GG, de Benedictis ML, Rigattieri S, Turri M, Anselmi M, Vassanelli C, Zardini P, Louvard Y, Hamon M (2004) Radial versus femoral approach for percutaneous coronary diagnostic and interventional procedures; systematic overview and meta-analysis of randomized trials. J Am Coll Cardiol 44:349–356. https://doi.org/10.1016/j.jacc.2004.04.034

    Article  PubMed  Google Scholar 

  29. Wasilewski J, Głowacki J, Poloński L (2013) Not at random location of atherosclerotic lesions in thoracic aorta and their prognostic significance in relation to the risk of cardiovascular events. Pol J Radiol 78:38–42. https://doi.org/10.12659/PJR.883944

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gu X, He Y, Li Z, Kontos MC, Paulsen WH, Arrowood JA, Vetrovec GW, Nixon JV (2011) Relation between the incidence, location, and extent of thoracic aortic atherosclerosis detected by transesophageal echocardiography and the extent of coronary artery disease by angiography. Am J Cardiol 107:175–178. https://doi.org/10.1016/j.amjcard.2010.09.003

    Article  PubMed  Google Scholar 

  31. Koutouzis MJ, Maniotis CD, Avdikos G, Tsoumeleas A, Andreou C, Kyriakides ZS (2016) Ulnar artery transient compression facilitating radial artery patent hemostasis (ULTRA): a novel technique to reduce radial artery occlusion after transradial coronary catheterization. J Invasive Cardiol 28:451–454

    PubMed  Google Scholar 

  32. Caputo RP, Tremmel JA, Rao S, Gilchrist IC, Pyne C, Pancholy S, Frasier D, Gulati R, Skelding K, Bertrand O, Patel T (2011) Transradial arterial access for coronary and peripheral procedures: executive summary by the transradial committee of the SCAI. Catheter Cardiovasc Interv 78:823–839. https://doi.org/10.1002/ccd.23052

    Article  PubMed  Google Scholar 

  33. Uhlemann M, Möbius-Winkler S, Mende M, Eitel I, Fuernau G, Sandri M, Adams V, Thiele H, Linke A, Schuler G, Gielen S (2012) The Leipzig prospective vascular ultrasound registry in radial artery catheterization: impact of sheath size on vascular complications. JACC Cardiovasc Interv 5:36–43. https://doi.org/10.1016/j.jcin.2011.08.011

    Article  PubMed  Google Scholar 

  34. Beyer AT, Ng R, Singh A, Zimmet J, Shunk K, Yeghiazarians Y, Ports TA, Boyle AJ (2013) Topical nitroglycerin and lidocaine to dilate the radial artery prior to transradial cardiac catheterization: a randomized, placebo-controlled, double-blind clinical trial: the PRE-DILATE Study. Int J Cardiol 168:2575–2578. https://doi.org/10.1016/j.ijcard.2013.03.048

    Article  PubMed  Google Scholar 

  35. Candemir B, Kumbasar D, Turhan S, Kilickap M, Ozdol C, Akyurek O, Atmaca Y, Altin T (2009) Facilitation of radial artery cannulation by periradial subcutaneous administration of nitroglycerin. J Vasc Interv Radiol 20:1151–1156. https://doi.org/10.1016/j.jvir.2009.05.034

    Article  PubMed  Google Scholar 

  36. Ezhumalai B, Satheesh S, Jayaraman B (2014) Effects of subcutaneously infiltrated nitroglycerin on diameter, palpability, ease-of-puncture and pre-cannulation spasm of radial artery during transradial coronary angiography. Indian Heart J 66:593–597. https://doi.org/10.1016/j.ihj.2014.05.023

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shotar E, Pouliquen G, Premat K, Pouvelle A, Mouyal S, Meyblum L, Lenck S, Degos V, Abi Jaoude S, Sourour N, Mathon B, Clarençon F (2021) CTA-based patient-tailored femoral or radial frontline access reduces the rate of catheterization failure in chronic subdural hematoma embolization. AJNR Am J Neuroradiol 42:495–500. https://doi.org/10.3174/ajnr.A6951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chase AJ, Fretz EB, Warburton WP, Klinke WP, Carere RG, Pi D, Berry B, Hilton JD (2008) Association of the arterial access site at angioplasty with transfusion and mortality: the M.O.R.T.A.L study (mortality benefit of reduced transfusion after percutaneous coronary intervention via the arm or leg). Heart 94:1019–1025. https://doi.org/10.1136/hrt.2007.136390

    Article  CAS  PubMed  Google Scholar 

  39. Madden NJ, Calligaro KD, Zheng H, Troutman DA, Dougherty MJ (2019) Outcomes of brachial artery access for endovascular interventions. Ann Vasc Surg 56:81–86. https://doi.org/10.1016/j.avsg.2018.07.061

    Article  PubMed  Google Scholar 

  40. Alvarez-Tostado JA, Moise MA, Bena JF, Pavkov ML, Greenberg RK, Clair DG, Kashyap VS (2009) The brachial artery: a critical access for endovascular procedures. J Vasc Surg 49:378–385. https://doi.org/10.1016/j.jvs.2008.09.017

    Article  PubMed  Google Scholar 

  41. Mokin M, Snyder KV, Levy EI, Hopkins LN, Siddiqui AH (2015) Direct carotid artery puncture access for endovascular treatment of acute ischemic stroke: technical aspects, advantages, and limitations. J Neurointerv Surg 7:108–113. https://doi.org/10.1136/neurintsurg-2013-011007

    Article  PubMed  Google Scholar 

  42. Fjetland L, Roy S (2018) Transcarotid endovascular thrombectomy for acute ischemic stroke. J Vasc Interv Radiol 29:1006–1010. https://doi.org/10.1016/j.jvir.2018.03.012

    Article  PubMed  Google Scholar 

  43. Benali F, Hinsenveld WH, van der Leij C, Roozenbeek B, van de Graaf RA, Staals J, Lingsma HF, van der Lugt A, Majoie CBM, van Zwam WH, MR CLEAN REGISTRY investigators (2021) Effect of heparinized flush concentration on safety and efficacy during endovascular thrombectomy for acute ischemic stroke: results from the Mr Clean registry. Cardiovasc Intervent Radiol 44:750–755. https://doi.org/10.1007/s00270-020-02726-9

    Article  PubMed  Google Scholar 

  44. Kiemeneij F (2017) Left distal transradial access in the anatomical snuffbox for coronary angiography (ldTRA) and interventions (ldTRI). EuroIntervention 13:851–857. https://doi.org/10.4244/EIJ-D-17-00079

    Article  PubMed  Google Scholar 

  45. Rodriguez Caamaño I, Barranco-Pons R, Klass D, de Dios las Cuevas M, Chirife OS, Aixut S (2021) Distal transradial artery access for neuroangiography and neurointerventions. Clin Neuroradiol 2021:1–8. https://doi.org/10.1007/s00062-021-01039-9

    Article  Google Scholar 

  46. Kawamura Y, Yoshimachi F, Nakamura N, Yamamoto Y, Kudo T, Ikari Y (2021) Impact of dedicated hemostasis device for distal radial arterial access with an adequate hemostasis protocol on radial arterial observation by ultrasound. Cardiovasc Interv Ther 36:104–110. https://doi.org/10.1007/s12928-020-00656-4

    Article  PubMed  Google Scholar 

  47. Khanna O, Velagapudi L, Das S, Sweid A, Mouchtouris N, Al Saiegh F, Avery MB, Chalouhi N, Schmidt RF, Sajja K, Gooch MR, Tjoumakaris S, Rosenwasser RH, Jabbour PM (2020) A comparison of radial versus femoral artery access for acute stroke interventions. J Neurosurg:1–6. https://doi.org/10.3171/2020.7.JNS201174

Download references

Acknowledgements

The authors thank Marta Pulido, MD, for editing the manuscript and editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

R. Barranco-Pons: principal investigator, design, data collection, analysis, and drafting of the manuscript. I. Rodríguez Caamaño and O. Sabino Chirife: design, data collection, and review of the manuscript for intellectual content. A. Nuñez-Guillen, H. Quesada and P. Cardona: data collection and review of the manuscript for intellectual content. All authors have seen and approved the final draft.

Corresponding author

Correspondence to Roger Barranco-Pons.

Ethics declarations

Ethics approval

The study was approved by the Ethics Committee of Hospital Universitari de Bellvitge, Barcelona (Spain).

Consent to participate

Written informed consent was waived as data were collected from a retrospective review of electronic medical records.

Conflicts of interest

None to be declared.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Figure 4. Differences between TRA and TFA in the revascularization time (cumulative incidence puncture to recanalization) in the overall study population (A) using propensity score matching analysis (B), in anterior circulation stroke patients (C), and in posterior circulation stroke patients (D) (PNG 1128 kb)

High Resolution Image (TIFF 201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barranco-Pons, R., Caamaño, I.R., Guillen, A.N. et al. Transradial versus transfemoral access for acute stroke endovascular thrombectomy: a 4-year experience in a high-volume center. Neuroradiology 64, 999–1009 (2022). https://doi.org/10.1007/s00234-021-02850-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-021-02850-4

Keywords

Navigation