Skip to main content

Advertisement

Log in

Arterial spin labeling for head and neck lesion assessment: technical adjustments and clinical applications

  • Review
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Despite, currently, “state-of-the-art” magnetic resonance imaging (MRI) protocols for head and neck (H&N) lesion assessment incorporate perfusion sequences, these acquisitions require the intravenous injection of exogenous gadolinium-based contrast agents (GBCAs), which may have potential risks. Alternative techniques such as arterial spin labeling (ASL) can provide quantitative microvascular information similar to conventional perfusion sequences for H&N lesions evaluation, as a potential alternative without GBCA administration.

Methods

We review the existing literature and analyze the latest evidence regarding ASL in H&N area highlighting the technical adjustments needed for a proper ASL acquisition in this challenging region for lesion characterization, treatment monitoring, and tumor recurrence detection.

Results

ASL techniques, widely used for central nervous system lesions evaluation, can be also applied to the H&N region. Technical adjustments, especially regarding post-labeling delay, are mandatory to obtain robust and reproducible results. Several studies have demonstrated the feasibility of ASL in the H&N area including the orbits, skull base, paranasal sinuses, upper airway, salivary glands, and thyroid.

Conclusion

ASL is a feasible technique for the assessment of H&N lesions without the need of GBCAs. This manuscript reviews ASL’s physical basis, emphasizing the technical adjustments necessary for proper ASL acquisition in this unique and challenging anatomical region, and the main applications in evaluating H&N lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sham M, Nishat S (2012) Imaging modalities in head-and-neck cancer patients. Indian J Dent Res 23:819–821

    Article  CAS  Google Scholar 

  2. Tshering Vogel DW, Thoeny HC (2016) Cross-sectional imaging in cancers of the head and neck: how we review and report. Cancer Imaging 16:20

    Article  Google Scholar 

  3. Chandak R, Degwekar S, Bhowte R et al (2011) An evaluation of efficacy of ultrasonography in the diagnosis of head and neck swellings. Dentomaxillofacial Radiol 40:213. https://doi.org/10.1259/DMFR/68658286

    Article  CAS  Google Scholar 

  4. Vogl TJ (2010) Different imaging techniques in the head and neck: assets and drawbacks. World J Radiol 2:224. https://doi.org/10.4329/wjr.v2.i6.224

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wippold FJ (2007) Head and neck imaging: the role of CT and MRI. J Magn Reson Imaging 25:453–465

    Article  Google Scholar 

  6. Jansen JFA, Parra C, Lu Y, Shukla-Dave A (2016) Evaluation of head and neck tumors with functional MR imaging. Magn Reson Imaging Clin N Am 24:123–133. https://doi.org/10.1016/j.mric.2015.08.011

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ger RB, Mohamed ASR, Awan MJ et al (2017) A multi-institutional comparison of dynamic contrast-enhanced magnetic resonance imaging parameter calculations. Sci Rep 7:11185. https://doi.org/10.1038/s41598-017-11554-w

    Article  CAS  Google Scholar 

  8. Choi YJ, Lee JH, Sung YS et al (2016) Value of dynamic contrast-enhanced MRI to detect local tumor recurrence in primary head and neck cancer patients. Medicine (Baltimore) 95:e3698. https://doi.org/10.1097/MD.0000000000003698

    Article  Google Scholar 

  9. Khawaja AZ, Cassidy DB, Al Shakarchi J et al (2015) Revisiting the risks of MRI with gadolinium based contrast agents—review of literature and guidelines. Insights Imaging 6:553–558

    Article  Google Scholar 

  10. Kanda T, Nakai Y, Oba H et al (2016) Gadolinium deposition in the brain. Magn Reson Imaging 34:1346–1350. https://doi.org/10.1016/j.mri.2016.08.024

    Article  CAS  PubMed  Google Scholar 

  11. Do C, DeAguero J, Brearley A et al (2020) Gadolinium-based contrast agent use, their safety, and practice evolution. Kidney 360(1):561–568. https://doi.org/10.34067/kid.0000272019

    Article  Google Scholar 

  12. Costelloe CM, Amini B, Madewell JE (2020) Risks and benefits of gadolinium-based contrast enhanced MRI. Semin Ultrasound CT MR 41:170–182. https://doi.org/10.1053/j.sult.2019.12.005

  13. Lersy F, Boulouis G, Clément O et al (2020) Consensus guidelines of the French Society of Neuroradiology (SFNR) on the use of gadolinium-based contrast agents (GBCAs) and related MRI protocols in neuroradiology. J Neuroradiol 47:441–449. https://doi.org/10.1016/j.neurad.2020.05.008

    Article  PubMed  Google Scholar 

  14. Lancelot E, Raynaud JS, Desché P (2020) Current and future MR contrast agents: seeking a better chemical stability and relaxivity for optimal safety and efficacy. Invest Radiol 55:578–588. https://doi.org/10.1097/RLI.0000000000000684

    Article  PubMed  Google Scholar 

  15. Lanzman B, Heit JJ (2017) Advanced MRI measures of cerebral perfusion and their clinical applications. Top Magn Reson Imaging 26:83–90

    Article  Google Scholar 

  16. Griffith B, Jain R (2016) Perfusion imaging in neuro-oncology: basic techniques and clinical applications. Magn Reson Imaging Clin N Am 24:765–779

    Article  Google Scholar 

  17. Schraml C, Schwenzer NF, Claussen CD, Martirosian P (2013) Examination of tissue perfusion by arterial spin labeling (ASL). Curr Radiol Rep 1:93–101. https://doi.org/10.1007/s40134-013-0009-9

    Article  Google Scholar 

  18. Odudu A, Nery F, Harteveld AA et al (2018) Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant 33:ii15–ii21. https://doi.org/10.1093/ndt/gfy180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schawkat K, Ith M, Christe A et al (2018) Dynamic non-invasive asl perfusion imaging of a normal pancreas with secretin augmented mr imaging. Eur Radiol 28:2389–2396. https://doi.org/10.1007/s00330-017-5227-8

    Article  PubMed  Google Scholar 

  20. Xiao B, Wang P, Zhao Y et al (2020) Nasopharyngeal carcinoma perfusion MRI: comparison of arterial spin labeling and dynamic contrast-enhanced MRI. Medicine (Baltimore) 99:e20503. https://doi.org/10.1097/MD.0000000000020503

    Article  Google Scholar 

  21. Abdel Razek AAK, Talaat M, El-Serougy L et al (2019) Clinical applications of arterial spin labeling in brain tumors. J Comput Assist Tomogr 43:525–532

    Article  Google Scholar 

  22. Alsop DC, Detre JA, Golay X et al (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73:102–116. https://doi.org/10.1002/mrm.25197

    Article  PubMed  Google Scholar 

  23. Grade M, Hernandez Tamames JA, Pizzini FB et al (2015) A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice. Neuroradiology 57:1181–1202. https://doi.org/10.1007/s00234-015-1571-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petcharunpaisan S (2010) Arterial spin labeling in neuroimaging. World J Radiol 2:384. https://doi.org/10.4329/wjr.v2.i10.384

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vidorreta M, Wang Z, Rodriguez I et al (2013) Comparison of 2D and 3D single-shot ASL perfusion fMRI sequences. Neuroimage 66:662–671. https://doi.org/10.1016/j.neuroimage.2012.10.087

    Article  PubMed  Google Scholar 

  26. Fernández-Seara MA, Wang Z, Wang J et al (2005) Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3 T. Magn Reson Med 54:1241–1247. https://doi.org/10.1002/mrm.20674

    Article  PubMed  Google Scholar 

  27. Gai ND, Butman JA (2019) Determining the optimal postlabeling delay for arterial spin labeling using subject-specific estimates of blood velocity in the carotid artery. J Magn Reson Imaging 50:951–960. https://doi.org/10.1002/jmri.26670

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fujima N, Kudo K, Tsukahara A et al (2015) Measurement of tumor blood flow in head and neck squamous cell carcinoma by pseudo-continuous arterial spin labeling: comparison with dynamic contrast-enhanced MRI. J Magn Reson Imaging 41:983–991. https://doi.org/10.1002/jmri.24637

    Article  PubMed  Google Scholar 

  29. Hirasawa S, Tsushima Y, Takei H et al (2007) Inverse correlation between tumor perfusion and glucose uptake in human head and neck tumors. Acad Radiol 14:312–318. https://doi.org/10.1016/j.acra.2006.12.017

    Article  PubMed  Google Scholar 

  30. Lin M, Yu X, Ouyang H et al (2015) Consistency of T2WI-FS/ASL fusion images in delineating the volume of nasopharyngeal carcinoma. Sci Rep 5:1–8. https://doi.org/10.1038/srep18431

    Article  CAS  Google Scholar 

  31. Sato Y, Matsumoto M (2017) Clinical usefulness of multiphase arterial spin labeling imaging for evaluating cerebral hemodynamic status in a patient with symptomatic carotid stenosis by comparison with single-photon emission computed tomography: a case study. Radiol Case Reports 12:824–826. https://doi.org/10.1016/j.radcr.2017.08.012

    Article  Google Scholar 

  32. Mezue M, Segerdahl AR, Okell TW et al (2014) Optimization and reliability of multiple postlabeling delay pseudo-continuous arterial spin labeling during rest and stimulus-induced functional task activation. J Cereb Blood Flow Metab 34:1919–1927. https://doi.org/10.1038/jcbfm.2014.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Geerts B, Leclercq D, Tezenas du Montcel S, et al (2017) Characterization of skull base lesions using pseudo-continuous arterial spin labeling. Clin Neuroradiol 1–12. https://doi.org/10.1007/s00062-017-0623-7

  34. Fujima N, Nakamaru Y, Sakashita T et al (2015) Differentiation of squamous cell carcinoma and inverted papilloma using non-invasive MR perfusion imaging. Dentomaxillofacial Radiol 44:20150074. https://doi.org/10.1259/dmfr.20150074

    Article  CAS  Google Scholar 

  35. Mamlouk MD, Hess CP (2016) Arterial spin-labeled perfusion for vascular anomalies in the pediatric head and neck. Clin Imaging 40:1040–1046. https://doi.org/10.1016/j.clinimag.2016.06.009

    Article  PubMed  Google Scholar 

  36. Eissa L, Abdel Razek AAK, Helmy E (2021) Arterial spin labeling and diffusion-weighted MR imaging: utility in differentiating idiopathic orbital inflammatory pseudotumor from orbital lymphoma. Clin Imaging 71:63–68. https://doi.org/10.1016/j.clinimag.2020.10.057

    Article  PubMed  Google Scholar 

  37. Razek AAKA (2019) Multi-parametric MR imaging using pseudo-continuous arterial-spin labeling and diffusion-weighted MR imaging in differentiating subtypes of parotid tumors. Magn Reson Imaging 63:55–59. https://doi.org/10.1016/j.mri.2019.08.005

    Article  CAS  PubMed  Google Scholar 

  38. Fujima N, Yoshida D, Sakashita T et al (2016) Usefulness of pseudocontinuous arterial spin-labeling for the assessment of patients with head and neck squamous cell carcinoma by measuring tumor blood flow in the pretreatment and early treatment period. Am J Neuroradiol 37:342–348. https://doi.org/10.3174/ajnr.A4513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamamoto T, Kimura H, Hayashi K et al (2018) Pseudo-continuous arterial spin labeling MR images in Warthin tumors and pleomorphic adenomas of the parotid gland: qualitative and quantitative analyses and their correlation with histopathologic and DWI and dynamic contrast enhanced MRI findings. Neuroradiology 60:803–812. https://doi.org/10.1007/s00234-018-2046-9

    Article  PubMed  Google Scholar 

  40. Abdel Razek AAK (2018) Arterial spin labelling and diffusion-weighted magnetic resonance imaging in differentiation of recurrent head and neck cancer from post-radiation changes. J Laryngol Otol 132:923–928. https://doi.org/10.1017/S0022215118001743

    Article  CAS  PubMed  Google Scholar 

  41. Razek AAKA, Helmy E (2020) Multi-parametric arterial spin labeling and diffusion-weighted imaging in differentiation of metastatic from reactive lymph nodes in head and neck squamous cell carcinoma. Eur Arch Oto-Rhino-Laryngology. https://doi.org/10.1007/s00405-020-06390-0

    Article  Google Scholar 

  42. Sokolska M, Bainbridge A, Rojas-Villabona A et al (2019) Effect of labelling plane angulation and position on labelling efficiency and cerebral blood flow quantification in pseudo-continuous arterial spin labelling. Magn Reson Imaging 59:61–67. https://doi.org/10.1016/j.mri.2019.02.007

    Article  CAS  PubMed  Google Scholar 

  43. Xu G, Rowley HA, Wu G et al (2010) Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer’s disease. NMR Biomed 23:286–293. https://doi.org/10.1002/nbm.1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fallatah SM, Pizzini FB, Gomez-Anson B, et al (2018) A visual quality control scale for clinical arterial spin labeling images. Eur Radiol Exp 2. https://doi.org/10.1186/s41747-018-0073-2

  45. Ma G, Xu X-Q, Zhu L-N, et al (2020) Intravoxel incoherent motion magnetic resonance imaging for assessing parotid gland tumors: correlation and comparison with arterial spin labeling imaging. Korean J Radiol 21. https://doi.org/10.3348/kjr.2020.0290

  46. Kato H, Kanematsu M, Watanabe H et al (2015) Perfusion imaging of parotid gland tumours: usefulness of arterial spin labeling for differentiating Warthin’s tumours. Eur Radiol 25:3247–3254. https://doi.org/10.1007/s00330-015-3755-7

    Article  PubMed  Google Scholar 

  47. Buxton RB (2005) Quantifying CBF with arterial spin labeling. In: Journal of Magnetic Resonance Imaging, pp 723–726

  48. Wu WC, St Lawrence KS, Licht DJ, Wang DJJ (2010) Quantification issues in arterial spin labeling perfusion magnetic resonance imaging. Top Magn Reson Imaging 21:65–73. https://doi.org/10.1097/RMR.0b013e31821e570a

    Article  PubMed  Google Scholar 

  49. Abdel Razek AAK, Nada N (2018) Arterial spin labeling perfusion-weighted MR imaging: correlation of tumor blood flow with pathological degree of tumor differentiation, clinical stage and nodal metastasis of head and neck squamous cell carcinoma. Eur Arch Oto-Rhino-Laryngology 275:1301–1307. https://doi.org/10.1007/s00405-018-4950-3

    Article  Google Scholar 

  50. Kabadi SJ, Fatterpekar GM, Anzai Y et al (2018) Dynamic contrast-enhanced MR imaging in head and neck cancer. Magn Reson Imaging Clin N Am 26:135–149

    Article  Google Scholar 

  51. Sourbron S (2010) Technical aspects of MR perfusion. Eur J Radiol 76:304–313. https://doi.org/10.1016/j.ejrad.2010.02.017

    Article  PubMed  Google Scholar 

  52. Kim HS, Kim SY (2007) A prospective study on the added value of pulsed arterial spin-labeling and apparent diffusion coefficients in the grading of gliomas. Am J Neuroradiol 28:1693–1699. https://doi.org/10.3174/ajnr.A0674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bogin L, Margalit R, Mispelter J, Degani H (2002) Parametric imaging of tumor perfusion using flow- and permeability-limited tracers. J Magn Reson Imaging 16:289–299. https://doi.org/10.1002/jmri.10159

    Article  PubMed  Google Scholar 

  54. Fujima N, Nakamaru Y, Sakashita T et al (2015) Differentiation of squamous cell carcinoma and inverted papilloma using non-invasive MR perfusion imaging. Dentomaxillofacial Radiol 44:1–8. https://doi.org/10.1259/dmfr.20150074

    Article  Google Scholar 

  55. Fujima N, Kameda H, Tsukahara A et al (2015) Diagnostic value of tumor blood flow and its histogram analysis obtained with pCASL to differentiate sinonasal malignant lymphoma from squamous cell carcinoma. Eur J Radiol 84:2187–2193. https://doi.org/10.1016/j.ejrad.2015.07.026

    Article  PubMed  Google Scholar 

  56. Ahn Y, Choi YJ, Sung YS et al (2021) Histogram analysis of arterial spin labeling perfusion data to determine the human papillomavirus status of oropharyngeal squamous cell carcinomas. Neuroradiology. https://doi.org/10.1007/s00234-021-02751-6

    Article  PubMed  Google Scholar 

  57. Iida E, Wiggins RH, Anzai Y (2016) Bilateral parotid oncocytoma with spontaneous intratumoral hemorrhage: a rare hypervascular parotid tumor with ASL perfusion. Clin Imaging 40:357–360. https://doi.org/10.1016/j.clinimag.2016.02.003

    Article  PubMed  Google Scholar 

  58. Fujima N, Kudo K, Yoshida D et al (2013) Arterial spin labeling to determine tumor viability in head and neck cancer before and after treatment. J Magn Reson Imaging 40:920–928. https://doi.org/10.1002/jmri.24421

    Article  Google Scholar 

  59. Sakai M, Illies T, Jerusel N et al (2016) Feasibility of non-contrast-enhanced four dimensional (4D) MRA in head and neck tumors, comparison with contrast-enhanced 4D MRA. Springerplus 5:1–9. https://doi.org/10.1186/s40064-016-2953-3

    Article  CAS  Google Scholar 

  60. Schraml C, Müssig K, Martirosian P et al (2009) Autoimmune thyroid disease: arterial spin-labeling perfusion MR imaging. Radiology 253:435–442. https://doi.org/10.1148/radiol.2533090166

    Article  PubMed  Google Scholar 

  61. Müssig K, Schraml C, Gallwitz B et al (2007) A novel MR-imaging technique using arterial spin labeling for thyroid gland perfusion in thyrotoxicosis. Thyroid 17:1155–1156. https://doi.org/10.1089/thy.2007.0019

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodoro Martín-Noguerol.

Ethics declarations

Conflict of interest

The authors declare conflict of interest.

Claudia Kirsch is a consultant of Primal Pictures 3D Anatomy-Informa and receives royalties. Paula Montesinos, PhD, is a clinical scientist of Philips Iberia. Antonio Luna, MD, PhD, is an occasional lecturer of Philips, Siemens Healthineers, Bracco, and Canon and receives royalties as book editor from Springer-Verlag.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Video 1 Scheme with necessary steps for ASL acquisition. Labeling plane is usually located at CCA and encompass an inversion pulse that conditions a change in blood water molecules spin magnetization. After spins are labeled, a time labeling delay must be waited till tagged blood reaches the anatomical region of interest. The readout sequence, acquired after the PLD time, can detect and read the changes in local tissue magnetization that labeled blood induces. (MP4 1333 KB)

Video 2 Scheme with different types of ASL acquisitions. CASL uses a large duration narrow labeling plane with a large readout FOV. PCASL uses a train of short RF and gradient pulses with a reduced readout FOV. PASL uses a single large label plane for a short time with a reduced FOV. (MP4 1326 KB)

Video 3 Invasive orbital melanoma. 90 y–o female with a large mass on the left globe underwent an MRI study. (a) Axial STIR image confirms the presence of a large ill-defined mass that invades the left globe. (b) Overlay of axial T1 FFE and TBF map from pCASL shows a severe increase of TBF within the globe mass. (c) Axial contrast-enhanced water only T1 Dixon shows patchy enhancement of the lesion (arrows). (d) Relative enhancement map from DCE-MRI sequence demonstrates a marked increase of perfusion within the lesions. Notice the comparable results regarding the degree of perfusion increase within the mass on both pCASL and DCE-MRI sequences. (MP4 961 KB)

Video 4 Autoimmune Thyroiditis. 20 y–o female with neck pain. Diffuse increase of thyroid gland is identified on axial STIR image (upper left corner of the video). Using a PLD of 1000 ms (right scheme), a better identification of patchy areas of blood flow increase within the thyroid is achieved (arrows), as the thyroid gland is near to labeling and readout planes so labeled blood can be detected in comparison to 1800 ms acquisition (left scheme) whereas labeling effect disappears if large PLD is waited. (MP4 3334 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Noguerol, T., Kirsch, C.F.E., Montesinos, P. et al. Arterial spin labeling for head and neck lesion assessment: technical adjustments and clinical applications. Neuroradiology 63, 1969–1983 (2021). https://doi.org/10.1007/s00234-021-02772-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-021-02772-1

Keywords

Navigation