Skip to main content

Altered cerebral perfusion in response to chronic mild hypercapnia and head-down tilt Bed rest as an analog for Spaceflight

Abstract

Purpose

Following prolonged stays on the International Space Station (ISS), some astronauts exhibit visual acuity changes, ophthalmological findings, and mildly elevated intracranial pressures as part of a novel process called spaceflight-associated neuro-ocular syndrome (SANS). To determine the pathophysiology of SANS, NASA conducted a multi-investigator study in which 11 healthy participants underwent head-down tilt bed rest, mimicking microgravity-induced cephalad fluid shifts, combined with elevated ambient CO2 levels similar to those on the ISS (HDT+CO2). As part of that study, we examined the effects of HDT+CO2 on cerebral perfusion.

Methods

Using arterial spin labeling, we compared cerebral perfusion before, during, and after HDT+CO2 in participants who developed SANS (n = 5) with those who did not (n = 6).

Results

All participants demonstrated a decrease in perfusion during HDT+CO2 (mean decrease of 25.1% at HDT7 and 16.2% at HDT29); however, the timing and degree of change varied between the groups. At day 7 of HDT+CO2, the SANS group experienced a greater reduction in perfusion than the non-SANS group (p =.05, 95% CI:-0.19 to 16.11, d=.94, large effect). Conversely, by day 29 of HDT+CO2, the SANS group had significantly higher perfusion (approaching their baseline) than the non-SANS group (p = .04, 95% CI:0.33 to 13.07, d=1.01, large effect).

Conclusion

Compared with baseline and recovery, HDT+CO2 resulted in reduced cerebral perfusion which varied based on SANS status. Further studies are needed to unravel the relative role of HDT vs hypercapnia, to determine if these perfusion changes are clinically relevant, and whether perfusion changes contribute to the development of SANS during spaceflight.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of data and material

Data is available by request to NASA at https://lsda.jsc.nasa.gov/.

Code availability

Data was processed using the open-access FMRIB Software Library version 6.0.3 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)

References

  1. 1.

    Lee AG, Mader TH, Gibson CR, Brunstetter TJ, Tarver WJ (2018) Space flight-associated neuro-ocular syndrome (SANS). Eye (Lond) 32:1164–1167. https://doi.org/10.1038/s41433-018-0070-y

    Article  Google Scholar 

  2. 2.

    Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, Tarver WJ, Dervay JP, Hamilton DR, Sargsyan A, Phillips JL, Tran D, Lipsky W, Choi J, Stern C, Kuyumjian R, Polk JD (2011) Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology 118:2058–2069. https://doi.org/10.1016/j.ophtha.2011.06.021

    Article  PubMed  Google Scholar 

  3. 3.

    Roberts DR, Albrecht MH, Collins HR, Asemani D, Chatterjee AR, Spampinato MV, Zhu X, Chimowitz MI, Antonucci MU (2017) Effects of spaceflight on astronaut brain structure as indicated on MRI. N Engl J Med 377:1746–1753. https://doi.org/10.1056/NEJMoa1705129

    Article  PubMed  Google Scholar 

  4. 4.

    Koppelmans V, Bloomberg JJ, Mulavara AP, Seidler RD (2016) Brain structural plasticity with spaceflight. NPJ Microgravity 2:2. https://doi.org/10.1038/s41526-016-0001-9

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Van Ombergen A et al (2018) Brain tissue-volume changes in cosmonauts. N Engl J Med 379:1678–1680. https://doi.org/10.1056/NEJMc1809011

    Article  PubMed  Google Scholar 

  6. 6.

    Van Ombergen A et al (2019) Brain ventricular volume changes induced by long-duration spaceflight. Proc Natl Acad Sci U S A 116:10531–10536. https://doi.org/10.1073/pnas.1820354116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lee JK, Koppelmans V, Riascos RF, Hasan KM, Pasternak O, Mulavara AP, Bloomberg JJ, Seidler RD (2019) Spaceflight-associated brain white matter microstructural changes and intracranial fluid redistribution. JAMA Neurol 76:412–419. https://doi.org/10.1001/jamaneurol.2018.4882

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kramer LA et al. (2020) Intracranial effects of microgravity: a prospective longitudinal MRI study. Radiology, 191413, doi:https://doi.org/10.1148/radiol.2020191413

  9. 9.

    Nicogossian AE, Dietlein LF (1989) in Space Physiology and Medicine (eds A. E. Nicogossian, E. L. Huntoon, & S. L. Pool) Ch. 14, 240-249 (Lea and Febiger)

  10. 10.

    Hargens AR, Vico L (2016) Long-duration bed rest as an analog to microgravity. J Appl Physiol 120:891–903. https://doi.org/10.1152/japplphysiol.00935.2015

    Article  PubMed  Google Scholar 

  11. 11.

    Taibbi G et al (2014) Ocular outcomes evaluation in a 14-day head-down bed rest study. Aviat Space Environ Med 85:983–992. https://doi.org/10.3357/ASEM.4055.2014

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Law J et al (2014) Relationship between carbon dioxide levels and reported headaches on the international space station. J Occup Environ Med 56:477–483. https://doi.org/10.1097/JOM.0000000000000158

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Laurie SS, Macias BR, Dunn JT, Young M, Stern C, Lee SMC, Stenger MB (2019) Optic disc edema after 30 days of strict head-down tilt bed rest. Ophthalmology 126:467–468. https://doi.org/10.1016/j.ophtha.2018.09.042

    Article  PubMed  Google Scholar 

  14. 14.

    Scheinberg P, Stead E (1949) A. The cerebral blood flow in male subjects as measured by the nitrous oxide technique. Normal values for blood flow, oxygen utilization, glucose utilization, and peripheral resistance, with observations on the effect of tilting and anxiety. J Clin Invest 28:1163–1171. https://doi.org/10.1172/JCI102150

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Hoiland RL, Fisher JA, Ainslie PN (2019) Regulation of the cerebral circulation by arterial carbon dioxide. Compr Physiol 9:1101–1154. https://doi.org/10.1002/cphy.c180021

    Article  PubMed  Google Scholar 

  16. 16.

    Sundblad P, Orlov O, Angerer O, Larina I, Cromwell RL (2014) Guidelines for Standardization of Bed Rest Studies in the Spaceflight Context., (International Academy of Astronautics)

  17. 17.

    Lee JK, de Dios Y, Kofman I, Mulavara AP, Bloomberg JJ, Seidler RD (2019) Head down tilt bed rest plus elevated CO2 as a spaceflight analog: effects on cognitive and sensorimotor performance. Front Hum Neurosci 13:355. https://doi.org/10.3389/fnhum.2019.00355

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Laurie SS, Christian K, Kysar J, Lee SMC, Lovering AT, Macias BR, Moestl S, Sies W, Mulder E, Young M, Stenger MB (2020) Unchanged cerebrovascular CO2 reactivity and hypercapnic ventilatory response during strict head-down tilt bed rest in a mild hypercapnic environment. J Physiol 598:2491–2505. https://doi.org/10.1113/JP279383

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Amen DG, Trujillo M, Keator D, Taylor DV, Willeumier K, Meysami S, Raji CA (2017) Gender-based cerebral perfusion differences in 46,034 functional neuroimaging scans. J Alzheimers Dis 60:605–614. https://doi.org/10.3233/JAD-170432

    Article  PubMed  Google Scholar 

  20. 20.

    Gur RE, Gur RC (1990) Gender differences in regional cerebral blood flow. Schizophr Bull 16:247–254. https://doi.org/10.1093/schbul/16.2.247

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Liu Y, Zhu X, Feinberg D, Guenther M, Gregori J, Weiner MW, Schuff N (2012) Arterial spin labeling MRI study of age and gender effects on brain perfusion hemodynamics. Magn Reson Med 68:912–922. https://doi.org/10.1002/mrm.23286

    Article  PubMed  Google Scholar 

  22. 22.

    Matteis M, Troisi E, Monaldo BC, Caltagirone C, Silvestrini M (1998) Age and sex differences in cerebral hemodynamics: a transcranial Doppler study. Stroke 29:963–967. https://doi.org/10.1161/01.str.29.5.963

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, Parkes LM, Smits M, van Osch MJP, Wang DJJ, Wong EC, Zaharchuk G (2014) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73:102–116. https://doi.org/10.1002/mrm.25197

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Smith LA, Melbourne A, Owen D, Cardoso MJ, Sudre CH, Tillin T, Sokolska M, Atkinson D, Chaturvedi N, Ourselin S, Hughes AD, Barkhof F, Jäger HR (2019) Cortical cerebral blood flow in ageing: effects of haematocrit, sex, ethnicity and diabetes. Eur Radiol 29:5549–5558. https://doi.org/10.1007/s00330-019-06096-w

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lu H, Clingman C, Golay X, van Zijl PC (2004) Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 52:679–682. https://doi.org/10.1002/mrm.20178

    Article  PubMed  Google Scholar 

  26. 26.

    Cohen J (1992) A power primer. Psychological Bulletin [PsycARTICLES] 112:155–159

    CAS  Article  Google Scholar 

  27. 27.

    Sawilowsky SS (2009) New Effect Size Rules of Thumb. J Mod Appl Stat Methods 8:597–599

    Article  Google Scholar 

  28. 28.

    Kety SS, Schmidt CF (1946) The effects of active and passive hyperventilation on cerebral blood flow, cerebral oxygen consumption, cardiac output, and blood pressure of normal young men. J Clin Invest 25:107–119

    Article  Google Scholar 

  29. 29.

    Ito H, Kanno I, Ibaraki M, Hatazawa J, Miura S (2003) Changes in human cerebral blood flow and cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J Cereb Blood Flow Metab 23:665–670. https://doi.org/10.1097/01.WCB.0000067721.64998.F5

    Article  PubMed  Google Scholar 

  30. 30.

    Noth U, Kotajima F, Deichmann R, Turner R, Corfield DR (2008) Mapping of the cerebral vascular response to hypoxia and hypercapnia using quantitative perfusion MRI at 3 T. NMR Biomed 21:464–472. https://doi.org/10.1002/nbm.1210

    Article  PubMed  Google Scholar 

  31. 31.

    Vavilala MS, Lee LA, Lam AM (2002) Cerebral blood flow and vascular physiology. Anesthesiol Clin North Am 20:247–264, v

    Article  Google Scholar 

  32. 32.

    Warner DS, Turner DM, Kassell NF (1987) Time-dependent effects of prolonged hypercapnia on cerebrovascular parameters in dogs: acid-base chemistry. Stroke 18:142–149

    CAS  Article  Google Scholar 

  33. 33.

    Pollock JM, Deibler AR, Whitlow CT, Tan H, Kraft RA, Burdette JH, Maldjian JA (2009) Hypercapnia-induced cerebral hyperperfusion: an underrecognized clinical entity. AJNR Am J Neuroradiol 30:378–385. https://doi.org/10.3174/ajnr.A1316

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Guillerm R, Radziszewski E (1979) Effects on man of 30-day exposure to a PICO2 of 14 torr (2 %): application to exposure limits. Undersea Biomed Res 6 Suppl, S91-114

  35. 35.

    Sliwka U, Krasney JA, Simon SG, Schmidt P, Noth J (1998) Effects of sustained low-level elevations of carbon dioxide on cerebral blood flow and autoregulation of the intracerebral arteries in humans. Aviat Space Environ Med 69:299–306

    CAS  PubMed  Google Scholar 

  36. 36.

    Arbeille P, Fomina G, Roumy J, Alferova I, Tobal N, Herault S (2001) Adaptation of the left heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-down tilt and spaceflights. Eur J Appl Physiol 86:157–168

    CAS  Article  Google Scholar 

  37. 37.

    Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J (2007) From space to Earth: advances in human physiology from 20 years of bed rest studies (1986-2006). Eur J Appl Physiol 101:143–194. https://doi.org/10.1007/s00421-007-0474-z

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Levine BD, Zuckerman JH, Pawelczyk JA (1997) Cardiac atrophy after bed-rest deconditioning: a nonneural mechanism for orthostatic intolerance. Circulation 96:517–525. https://doi.org/10.1161/01.cir.96.2.517

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Kramer LA, Hasan KM, Sargsyan AE, Marshall-Goebel K, Rittweger J, Donoviel D, Higashi S, Mwangi B, Gerlach DA, Bershad EM, SPACECOT Investigators Group (2017) Quantitative MRI volumetry, diffusivity, cerebrovascular flow, and cranial hydrodynamics during head-down tilt and hypercapnia: the SPACECOT study. J Appl Physiol 122:1155–1166. https://doi.org/10.1152/japplphysiol.00887.2016

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Frey MA, Mader TH, Bagian JP, Charles JB, Meehan RT (1993) Cerebral blood velocity and other cardiovascular responses to 2 days of head-down tilt. J Appl Physiol 74:319–325. https://doi.org/10.1152/jappl.1993.74.1.319

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Jeong SM, Shibata S, Levine BD, Zhang R (2012) Exercise plus volume loading prevents orthostatic intolerance but not reduction in cerebral blood flow velocity after bed rest. Am J Physiol 302:H489–H497. https://doi.org/10.1152/ajpheart.00427.2011

    CAS  Article  Google Scholar 

  42. 42.

    Pavy-Le Trao A et al (2002) Changes in kinetics of cerebral auto-regulation with head-down bed rest. Clin Physiol Funct Imaging 22:108–114. https://doi.org/10.1046/j.1365-2281.2002.00403.x

    Article  PubMed  Google Scholar 

  43. 43.

    Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57:769–774

    CAS  Article  Google Scholar 

  44. 44.

    Levine BD, Giller CA, Lane LD, Buckey JC, Blomqvist CG (1994) Cerebral versus systemic hemodynamics during graded orthostatic stress in humans. Circulation 90:298–306

    CAS  Article  Google Scholar 

  45. 45.

    Coverdale NS, Gati JS, Opalevych O, Perrotta A, Shoemaker JK (2014) Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia. J Appl Physiol 117:1090–1096. https://doi.org/10.1152/japplphysiol.00285.2014

    Article  PubMed  Google Scholar 

  46. 46.

    Zhang R, Zuckerman JH, Pawelczyk JA, Levine BD (1997) Effects of head-down-tilt bed rest on cerebral hemodynamics during orthostatic stress. J Appl Physiol 83:2139–2145

    CAS  Article  Google Scholar 

  47. 47.

    Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, Parkes LM, Smits M, van Osch MJP, Wang DJJ, Wong EC, Zaharchuk G (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73:102–116. https://doi.org/10.1002/mrm.25197

    Article  PubMed  Google Scholar 

  48. 48.

    Johansen LB, Gharib C, Allevard AM, Sigaudo D, Christensen NJ, Drummer C, Norsk P (1997) Haematocrit, plasma volume and noradrenaline in humans during simulated weightlessness for 42 days. Clin Physiol 17:203–210. https://doi.org/10.1046/j.1365-2281.1997.02626.x

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Meck JV, Dreyer SA, Warren LE (2009) Long-duration head-down bed rest: project overview, vital signs, and fluid balance. Aviat Space Environ Med 80:A1–A8

    Article  Google Scholar 

  50. 50.

    Platts SH, Martin DS, Stenger MB, Perez SA, Ribeiro LC, Summers R, Meck JV (2009) Cardiovascular adaptations to long-duration head-down bed rest. Aviat Space Environ Med 80:A29–A36

    Article  Google Scholar 

  51. 51.

    Zwart SR, Crawford GE, Gillman PL, Kala G, Rodgers AS, Rogers A, Inniss AM, Rice BL, Ericson K, Coburn S, Bourbeau Y, Hudson E, Mathew G, DeKerlegand DE, Sams CF, Heer MA, Paloski WH, Smith SM (2009) Effects of 21 days of bed rest, with or without artificial gravity, on nutritional status of humans. J Appl Physiol 107:54–62. https://doi.org/10.1152/japplphysiol.91136.2008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Duque C, Feske SK, Sorond FA (2017) Cerebrovascular Hemodynamics in Women. Semin Neurol 37:679–688. https://doi.org/10.1055/s-0037-1608881

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Kastrup A, Thomas C, Hartmann C, Schabet M (1997) Sex dependency of cerebrovascular CO2 reactivity in normal subjects. Stroke 28:2353–2356. https://doi.org/10.1161/01.str.28.12.2353

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Fritsch-Yelle JM, Whitson PA, Bondar RL, Brown TE (1996) Subnormal norepinephrine release relates to presyncope in astronauts after spaceflight. J Appl Physiol 81:2134–2141. https://doi.org/10.1152/jappl.1996.81.5.2134

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Stegner MB et al. (2017) Evidence report: risk of spaceflight associated neuro-ocular syndrome (SANS). In: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center (eds)  Houston, TexasAvailable online at https://humanresearchroadmap.nasa.gov/evidence/reports/SANS.pdf

  56. 56.

    Petersen LG, Petersen JC, Andresen M, Secher NH, Juhler M (2016) Postural influence on intracranial and cerebral perfusion pressure in ambulatory neurosurgical patients. Am J Phys Regul Integr Comp Phys 310:R100–R104. https://doi.org/10.1152/ajpregu.00302.2015

    CAS  Article  Google Scholar 

  57. 57.

    Jiang L, Kim M, Chodkowski BA, Donahue MJ, Pekar JJ, van Zijl PCM, Albert M (2010) Reliability and reproducibility of perfusion MRI in cognitively normal subjects. Magn Reson Imaging 28:1283–1289. https://doi.org/10.1016/j.mri.2010.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Ssali T, Anazodo UC, Bureau Y, MacIntosh BJ, Günther M, St. Lawrence K (2016) Mapping long-term functional changes in cerebral blood flow by arterial spin labeling. PLoS One 11:e0164112. https://doi.org/10.1371/journal.pone.0164112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    James JT (2007) The headache of carbon dioxide exposures. 37th International Conference on Environmental Systems, Chicago, Illinois, July 9-12, 2007 2007: SAE International, in SAE Technical Paper Series 2007-01-3218.

Download references

Acknowledgements

Research reported in this study was facilitated by the Spaceflight Standard Measures Cross-Cutting Project of the Human Research Program of the National Aeronautics and Space Administration. We thank Grant Gauthier, Ali Freitas, and Lexus Hartung for assistant with data analysis. We also thank the entire VaPER study staff.

Funding

This study was funded by the National Aeronautics and Space Administration (NASA), grant # NNX13AJ92G.

Author information

Affiliations

Authors

Contributions

Donna R. Roberts, MD—concept, design of study, data interpretation, prepared 1st draft of manuscript

Heather R. Collins, PhD—performed all of the statistical analyses, approved final draft of manuscript

Jessica K. Lee, PhD—data collection, approved final draft of manuscript

James A. Taylor—data analysis, approved final draft of manuscript

Matthew Turner—data analysis, approved final draft of manuscript

Greg Zaharchuk, MD, PhD—design of study, data interpretation, approved final draft of manuscript

Max Wintermark, MD—design of study, data interpretation, approved final draft of manuscript

Michael Antonucci, MD—design of study, data interpretation, approved final draft of manuscript

Edwin R. Mulder, PhD—concept and design of the VaPER bed rest study, data interpretation, approved final draft of manuscript

Darius A. Gerlach, PhD—concept and design of the VaPER bed rest study, data interpretation, approved final draft of manuscript

Davud Asemani, PhD—data analysis, approved final draft of manuscript

Heather R. McGregor, PhD—data analysis, approved final draft of manuscript

Rachael D. Seidler, PhD—concept, design of study, data interpretation, approved final draft of manuscript

Corresponding author

Correspondence to Donna R. Roberts.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the local ethical commission of the regional medical association, Ärztekammer Nordrhein, and the University of Florida, Medical University of South Carolina, and Johnson Space Center Institutional Review Boards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 167 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roberts, D.R., Collins, H.R., Lee, J.K. et al. Altered cerebral perfusion in response to chronic mild hypercapnia and head-down tilt Bed rest as an analog for Spaceflight. Neuroradiology 63, 1271–1281 (2021). https://doi.org/10.1007/s00234-021-02660-8

Download citation

Keywords

  • Hypercapnia
  • Healthy participant
  • Head-down tilt bed rest
  • Human spaceflight
  • Spaceflight-associated neuro-ocular syndrome