Skip to main content

Advertisement

Log in

Effects of different smoothing on global and regional resting functional connectivity

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Spatial smoothing is an essential pre-processing step in the process of analysing functional magnetic resonance imaging (fMRI) data, both during an experimental task or during resting-state fMRI (rsfMRI). The main benefit of this spatial smoothing step is to artificially increase the signal-to-noise ratio of the fMRI signal. Previous fMRI studies have investigated the impact of spatial smoothing on task fMRI data, while rsfMRI studies usually apply the same analytical process used for the task data. However, this study investigates changes in different rsfMRI analyses, such as ROI-to-ROI, seed-to-voxels and ICA analyses.

Methods

Nineteen healthy volunteers were scanned using rsfMRI with three applied smoothing kernels: 0 mm, 4 mm and 8 mm. Appropriate statistical comparisons were made.

Results

The findings showed that spatial smoothing has a greater effect on rsfMRI data when analysed using seed-to-voxel-based analysis. The effect was less pronounced when analysing data using ROI-ROI or ICA analyses. The results demonstrated that even when analysing the data without the application of spatial smoothing, the results were significant compared with data analysed using a typical smoothing kernel. However, data analysed with lower-smoothing kernels produced greater negative correlations, particularly with the ICA analysis.

Conclusion

The results suggest that a medium smoothing kernel (around 4 mm) may be preferable, as it is comparable with the 8 mm kernel in all of the analyses performed. It is also recommended that the researchers consider analysing the data using two different smoothing kernels, as this will help to confirm the significance of the results and avoid overestimating the findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Friston K (2002) Functional integration and inference in the brain. Prog Neurobiol 68(2):113–143

    Article  PubMed  Google Scholar 

  2. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  CAS  PubMed  Google Scholar 

  3. Reimann M, Schilke O, Weber B, Neuhaus C, Zaichkowsky J (2011) Functional magnetic resonance imaging in consumer research: a review and application. Psychol Mark 28(6):608–637

    Article  Google Scholar 

  4. Lee MH, Smyser CD, Shimony JS (2013) Resting-state fMRI: a review of methods and clinical applications. Am J Neuroradiol 34(10):1866–1872

    Article  CAS  PubMed  Google Scholar 

  5. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878. https://doi.org/10.1038/nature06976

    Article  CAS  PubMed  Google Scholar 

  6. Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL, Nichols TE, Robinson EC, Salimi-Khorshidi G, Woolrich MW (2013) Functional connectomics from resting-state fMRI. Trends Cogn Sci 17(12):666–682

    Article  PubMed  PubMed Central  Google Scholar 

  7. Smith SM (2004) Overview of fMRI analysis. Br J Radiol 77(suppl_2):S167–S175. https://doi.org/10.1259/bjr/33553595

    Article  PubMed  Google Scholar 

  8. Jezzard P, Toosy A (2005) Functional MRI. In: MR Imaging in White Matter Diseases of the Brain and Spinal Cord. Springer, pp 93–110

  9. Smith SM, Matthews PM, Jezzard P (2001) Functional MRI: an introduction to methods. Oxford University Press, Oxford

    Google Scholar 

  10. Strother SC (2006) Evaluating fMRI preprocessing pipelines. IEEE Eng Med Biol Mag 25(2):27–41

    Article  PubMed  Google Scholar 

  11. Henson RN (2006) Efficient experimental design for fMRI. In: Friston K, Ashburner J, Kiebel S, Nichols T, Penny W, (eds) Statistical parametric mapping: the analysis of functional brain images. London, Elsevier, pp 193–210

  12. Wang J, Wang Z, Aguirre GK, Detre JA (2005) To smooth or not to smooth? ROC analysis of perfusion fMRI data. Magn Reson Imaging 23(1):75–81

    Article  CAS  PubMed  Google Scholar 

  13. Margulies DS, Böttger J, Long X, Lv Y, Kelly C, Schäfer A, Goldhahn D, Abbushi A, Milham MP, Lohmann G (2010) Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity. MAGMA 23(5-6):289–307

    Article  PubMed  Google Scholar 

  14. Hagler DJ Jr, Saygin AP, Sereno MI (2006) Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. NeuroImage 33(4):1093–1103

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mikl M, Mareček R, Hluštík P, Pavlicová M, Drastich A, Chlebus P, Brázdil M, Krupa P (2008) Effects of spatial smoothing on fMRI group inferences. Magn Reson Imaging 26(4):490–503

    Article  PubMed  Google Scholar 

  16. Hopfinger JB, Büchel C, Holmes AP, Friston KJ (2000) A study of analysis parameters that influence the sensitivity of event-related fMRI analyses. NeuroImage 11(4):326–333

    Article  CAS  PubMed  Google Scholar 

  17. Bennett CM, Miller MB (2010) How reliable are the results from functional magnetic resonance imaging? Ann N Y Acad Sci 1191(1):133–155

    Article  PubMed  Google Scholar 

  18. Alakörkkö T, Saarimäki H, Glerean E, Saramäki J, Korhonen O (2017) Effects of spatial smoothing on functional brain networks. Eur J Neurosci 46(9):2471–2480

    Article  PubMed  PubMed Central  Google Scholar 

  19. Smith SM (2001) 12 Preparing fMRI data for statistical analysis. Functional MRI: An introduction to methods:229

  20. Wu CW, Chen C-L, Liu P-Y, Chao Y-P, Biswal BB, Lin C-P (2011) Empirical evaluations of slice-timing, smoothing, and normalization effects in seed-based, resting-state functional magnetic resonance imaging analyses. Brain Connect 1(5):401–410

    Article  PubMed  Google Scholar 

  21. Molloy EK, Meyerand ME, Birn RM (2014) The influence of spatial resolution and smoothing on the detectability of resting-state and task fMRI. NeuroImage 86:221–230

    Article  PubMed  Google Scholar 

  22. Worsley KJ (2003) Developments in Random Field Theory. (2):1-9

  23. Alahmadi AA, Samson RS, Gasston D, Pardini M, Friston KJ, D'Angelo E, Toosy AT, Wheeler-Kingshott CA (2016) Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum. Brain Struct Funct 221(5):2443–2458. https://doi.org/10.1007/s00429-015-1048-1

    Article  PubMed  Google Scholar 

  24. Boudrias MH, Goncalves CS, Penny WD, Park CH, Rossiter HE, Talelli P, Ward NS (2012) Age-related changes in causal interactions between cortical motor regions during hand grip. NeuroImage 59(4):3398–3405. https://doi.org/10.1016/j.neuroimage.2011.11.025

    Article  PubMed  PubMed Central  Google Scholar 

  25. Caspers S, Eickhoff SB, Geyer S, Scheperjans F, Mohlberg H, Zilles K, Amunts K (2008) The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212(6):481–495. https://doi.org/10.1007/s00429-008-0195-z

    Article  PubMed  Google Scholar 

  26. Keisker B, Hepp-Reymond M-C, Blickenstorfer A, Meyer M, Kollias SS (2009) Differential force scaling of fine-graded power grip force in the sensorimotor network. Hum Brain Mapp 30(8):2453–2465. https://doi.org/10.1002/hbm.20676

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pajula J, Tohka J (2014) Effects of spatial smoothing on inter-subject correlation based analysis of FMRI. Magn Reson Imaging 32(9):1114–1124

    Article  PubMed  Google Scholar 

  28. Scheinost D, Papademetris X, Constable RT (2014) The impact of image smoothness on intrinsic functional connectivity and head motion confounds. NeuroImage 95:13–21

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tabelow K, Piëch V, Polzehl J, Voss HU (2009) High-resolution fMRI: overcoming the signal-to-noise problem. J Neurosci Methods 178(2):357–365. https://doi.org/10.1016/j.jneumeth.2008.12.011

    Article  PubMed  Google Scholar 

  30. Triantafyllou C, Hoge RD, Wald LL (2006) Effect of spatial smoothing on physiological noise in high-resolution fMRI. NeuroImage 32(2):551–557

    Article  PubMed  Google Scholar 

  31. Pizzagalli F, Auzias G, Delon-Martin C, Dojat M (2011) Combination of nonlinear registration methods with high resolution fMRI for a fine exploration of human primary motor hand area. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference 2011:6989–6992. https://doi.org/10.1109/IEMBS.2011.6091767

  32. Lindquist MA, Loh JM, Yue YR (2010) Adaptive spatial smoothing of fMRI images. Statistics and its Interface 3(1):3–13

    Article  Google Scholar 

  33. Liu Y, Liang P, Duan Y, Jia X, Yu C, Zhang M, Wang F, Zhang M, Dong H, Ye J, Butzkueven H, Li K (2011) Brain plasticity in relapsing-remitting multiple sclerosis: evidence from resting-state fMRI. J Neurol Sci 304(1-2):127–131. https://doi.org/10.1016/j.jns.2011.01.023

    Article  PubMed  Google Scholar 

  34. Parkes LM, Bastiaansen MC, Norris DG (2006) Combining EEG and fMRI to investigate the post-movement beta rebound. NeuroImage 29(3):685–696

    Article  PubMed  Google Scholar 

  35. Spraker MB, Yu H, Corcos DM, Vaillancourt DE (2007) Role of individual basal ganglia nuclei in force amplitude generation. J Neurophysiol 98(2):821–834. https://doi.org/10.1152/jn.00239.2007

    Article  PubMed  PubMed Central  Google Scholar 

  36. Biswal BB, Mennes M, Zuo X-N, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S (2010) Toward discovery science of human brain function. Proc Natl Acad Sci 107(10):4734–4739

    Article  CAS  PubMed  Google Scholar 

  37. Khalili-Mahani N, Zoethout RM, Beckmann CF, Baerends E, de Kam ML, Soeter RP, Dahan A, van Buchem MA, van Gerven JM, Rombouts SA (2012) Effects of morphine and alcohol on functional brain connectivity during “resting state”: a placebo-controlled crossover study in healthy young men. Hum Brain Mapp 33(5):1003–1018

    Article  PubMed  Google Scholar 

  38. Klaassens BL, van Gorsel HC, Khalili-Mahani N, van der Grond J, Wyman BT, Whitcher B, Rombouts SA, van Gerven JM (2015) Single-dose serotonergic stimulation shows widespread effects on functional brain connectivity. NeuroImage 122:440–450

    Article  PubMed  Google Scholar 

  39. Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2(3):125–141. https://doi.org/10.1089/brain.2012.0073

  40. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25(4):1325–1335. https://doi.org/10.1016/j.neuroimage.2004.12.034

    Article  PubMed  Google Scholar 

  41. Chen Z, Calhoun V (2018) Effect of spatial smoothing on task fMRI ICA and functional connectivity. Front Neurosci 12(15). https://doi.org/10.3389/fnins.2018.00015

  42. Zhang S, Li C-SR (2014) Functional clustering of the human inferior parietal lobule by whole-brain connectivity mapping of resting-state functional magnetic resonance imaging signals. Brain Connect 4(1):53–69

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Skvortsova A, Veldhuijzen DS, de Rover M, Pacheco-Lopez G, Bakermans-Kranenburg M, van IJzendoorn M, Chavannes NH, van Middendorp H, Evers AW (2020) Effects of oxytocin administration and conditioned oxytocin on brain activity: an fMRI study. PLoS One 15(3):e0229692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baldoli C, Scola E, Della Rosa PA, Pontesilli S, Longaretti R, Poloniato A, Scotti R, Blasi V, Cirillo S, Iadanza A (2015) Maturation of preterm newborn brains: a fMRI–DTI study of auditory processing of linguistic stimuli and white matter development. Brain Struct Funct 220(6):3733–3751

    Article  PubMed  Google Scholar 

  45. van der Miesen M (2015) The role of self-esteem in social feedback: an fMRI study. Student Undergraduate Research E-journal! 1

  46. Kann S, Zhang S, Manza P, Leung H-C, Li C-SR (2016) Hemispheric lateralization of resting-state functional connectivity of the anterior insula: association with age, gender, and a novelty-seeking trait. Brain Connect 6(9):724–734

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gong J, Liu X, Liu T, Zhou J, Sun G, Tian J (2017) Dual temporal and spatial sparse representation for inferring group-wise brain networks from resting-state fMRI dataset. IEEE Trans Biomed Eng 65(5):1035–1048

    PubMed  Google Scholar 

  48. Zarei M (2018) Precentral gyrus abnormal connectivity in male and female patients with schizophrenia

  49. Schleifer C, Lin A, Kushan L, Ji JL, Yang G, Bearden CE, Anticevic A (2019) Dissociable disruptions in thalamic and hippocampal resting-state functional connectivity in youth with 22q11. 2 deletions. J Neurosci 39(7):1301–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qing Z, Zhang X, Ye M, Wu S, Wang X, Nedelska Z, Hort J, Zhu B, Zhang B (2019) The impact of spatial normalization strategies on the temporal features of the resting-state functional MRI: spatial normalization before rs-fMRI features calculation may reduce the reliability. Front Neurosci 13:1249

    Article  PubMed  PubMed Central  Google Scholar 

  51. Feis RA, Smith SM, Filippini N, Douaud G, Dopper EG, Heise V, Trachtenberg AJ, van Swieten JC, van Buchem MA, Rombouts SA (2015) ICA-based artifact removal diminishes scan site differences in multi-center resting-state fMRI. Front Neurosci 9:395

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dansereau C, Benhajali Y, Risterucci C, Pich EM, Orban P, Arnold D, Bellec P (2017) Statistical power and prediction accuracy in multisite resting-state fMRI connectivity. NeuroImage 149:220–232

    Article  PubMed  Google Scholar 

Download references

Funding

This project was funded by the deanship of Scientific Research (DSR) at King Abdulaizz University (KAU), Jeddah. The author, therefore, acknowledges with thanks DSR for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan A. S. Alahmadi.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Ethical approval

The data samples were taken from the Leiden_2200 data sample (open access) (http://fcon_1000.projects.nitrc.org). All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study. The included participant data were taken from the Leiden_2200 dataset which is part of the 1000 functional connectomes project.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alahmadi, A.A.S. Effects of different smoothing on global and regional resting functional connectivity. Neuroradiology 63, 99–109 (2021). https://doi.org/10.1007/s00234-020-02523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-020-02523-8

Keywords

Navigation