Skip to main content

Advertisement

Log in

Value of quantitative multiparametric MRI in differentiating pleomorphic adenomas from malignant epithelial tumors in lacrimal gland

  • Head-Neck-ENT Radiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the diagnostic performance of the quantitative parameters derived from diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MRI in differentiating lacrimal gland pleomorphic adenomas (LGPAs) from lacrimal gland malignant epithelial tumors (LGMETs).

Methods

Seventy-seven cases with LG epithelial tumors confirmed by histopathology (47 LGPAs and 30 LGMETs) underwent DWI and DCE-MRI. The quantitative parameters including the apparent diffusion coefficient (ADC), the volume transfer constant (Ktrans), the efflux rate constant from the extravascular extracellular space (EES) to blood plasma (Kep), and the extravascular extracellular volume fraction (Ve) were used to differentiate LGPAs from LGMETs. Independent-samples t test was conducted to compare these parameters. The diagnostic performance was evaluated using receiver operating characteristic (ROC) curve analysis.

Results

Compared with LGPAs, LGMETs had significantly lower ADC value (1.090 ± 0.169mm2/s) (P < 0.001), higher Ktrans value (0.892 ± 0.517/min) (P = 0.001), and Kep value (1.300 ± 1.131/min) (P = 0.002). ADC as a diagnostic index showed a better diagnostic efficacy in predicting malignant tumors (AUC 0.914, sensitivity 90.0%, specificity 85.1%, and accuracy 87.0%) than Ktrans and Kep alone. The combination of ADC and Ktrans presented the optimal diagnostic performance for the differentiation (AUC 0.938, sensitivity 93.3%, specificity 87.2%, accuracy 89.6%).

Conclusion

The quantitative parameters including ADC, Ktrans, and Kep derived from DWI and DCE-MRI might be potential imaging biomarkers in differentiating LGPAs from LGMETs. The combination of ADC and Ktrans is superior to other quantitative parameters in distinguishing LGPAs from LGMETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Young SM, Kim YD, Shin HJ, Imagawa Y, Lang SS, Woo KI (2019) Lacrimal gland pleomorphic adenoma and malignant epithelial tumours: clinical and imaging differences. Br J Ophthalmol 103:264–268. https://doi.org/10.1136/bjophthalmol-2017-311538

    Article  PubMed  Google Scholar 

  2. Vaidhyanath R, Kirke R, Brown L, Sampath R (2008) Lacrimal fossa lesions: pictorial review of CT and MRI features. Orbit 27:410–418. https://doi.org/10.1080/01676830802333667

    Article  CAS  PubMed  Google Scholar 

  3. Jung WS, Ahn KJ, Park MR, Kim JY, Choi JJ, Kim BS, Hahn ST (2007) The radiological spectrum of orbital pathologies that involve the lacrimal gland and the lacrimal fossa. Korean J Radiol 8:336–342. https://doi.org/10.3348/kjr.2007.8.4.336

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rose GE, Wright JE (1992) Pleomorphic adenoma of the lacrimal gland. Br J Ophthalmol 76:395–400. https://doi.org/10.1136/bjo.76.7.395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Prabhakaran VC, Cannon PS, McNab A, Davis G, O'Donnell B, Dolman PJ, Ghabrial R, Selva D (2010) Lesions mimicking lacrimal gland pleomorphic adenoma. Br J Ophthalmol 94:1509–1512. https://doi.org/10.1136/bjo.2008.156307

    Article  PubMed  Google Scholar 

  6. Lai T, Prabhakaran VC, Malhotra R, Selva D (2009) Pleomorphic adenoma of the lacrimal gland: is there a role for biopsy? Eye 23:2–6. https://doi.org/10.1038/eye.2008.16

    Article  CAS  PubMed  Google Scholar 

  7. Clarós P, Choffor-Nchinda E, Lopez-Fortuny M, Zofia Sobolewska A, Clarós A (2019) Lacrimal gland pleomorphic adenoma: a review of 52 cases, 15-year experience. Acta Otolaryngol 139:100–104. https://doi.org/10.1080/00016489.2018.1541362

    Article  PubMed  Google Scholar 

  8. Gündüz K, Shields CL, Günalp I, Shields JA (2003) Magnetic resonance imaging of unilateral lacrimal gland lesions. Graefes Arch Clin Exp Ophthalmol 241:907–913. https://doi.org/10.1007/s00417-003-0748-z

    Article  PubMed  Google Scholar 

  9. Mafee MF, Edward DP, Koeller KK, Dorodi S (1999) Lacrimal gland tumors and simulating lesions. Clinicopathologic and MR imaging features. Radiol Clin N Am 37:219–239. https://doi.org/10.1016/s0033-8389(05)70089-0

    Article  CAS  PubMed  Google Scholar 

  10. Elkhamary SM (2012) Lacrimal gland lesions: can addition of diffusion- weighted MR imaging improve diagnostic accuracy in characterization? Egypt J Radiol Nucl Med 43:165–172. https://doi.org/10.1016/j.ejrnm.2012.02.003

    Article  Google Scholar 

  11. Porter N, Sandhu A, O'Connell TB, Selva D, Leibovitch I (2007) Pleomorphic adenoma of the palpebral lobe of the lacrimal gland. Otolaryngol Head Neck Surg 136:328–329. https://doi.org/10.1016/j.otohns.2006.06.1245

    Article  PubMed  Google Scholar 

  12. Alkatan HM, Al-Harkan DH, Al-Mutlaq M, Maktabi A, Elkhamary SM (2014) Epithelial lacrimal gland tumors: a comprehensive clinicopathologic review of 26 lesions with radiologic correlation. Saudi J Ophthalmol 28:49–57. https://doi.org/10.1016/j.sjopt.2013.12.007

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xu XQ, Hu H, Su GY, Liu H, Hong XN, Shi HB, Wu FY (2016) Utility of histogram analysis of ADC maps for differentiating orbital tumors. Diagn Interv Radiol 22:161–167. https://doi.org/10.5152/dir.2015.15202

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sun B, Song L, Wang X, Li J, Xian J, Wang F, Tan P (2017) Lymphoma and inflammation in the orbit: diagnostic performance with diffusion-weighted imaging and dynamic contrast-enhanced MRI. J Magn Reson Imaging 45:1438–1445. https://doi.org/10.1002/jmri.25480

    Article  PubMed  Google Scholar 

  15. Zhang F, Sha Y, Qian J, Huang WH, Li XF, Wang SJ, Ye XP (2014) Role of magnetic resonance diffusion-weighted imaging in differentiating lacrimal masses. J Magn Reson Imaging 40:641–648. https://doi.org/10.1002/jmri.24392

    Article  PubMed  Google Scholar 

  16. Xu XQ, Qian W, Ma G, Hu H, Su GY, Liu H, Shi HB, Wu FY (2017) Combined diffusion-weighted imaging and dynamic contrast-enhanced MRI for differentiating radiologically indeterminate malignant from benign orbital masses. Clin Radiol 72:903–e9-903.e15. https://doi.org/10.1016/j.crad.2017.04.007

    Article  PubMed  Google Scholar 

  17. Xian J, Zhang Z, Wang Z, Li J, Yang B, Man F, Chang Q, Zhang Y (2010) Value of MRI in the differentiation of benign and malignant orbital tumours in adults. Eur Radiol 20:1692–1702. https://doi.org/10.1007/s00330-009-1711-0

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yuan Y, Kuai XP, Chen XS, Tao XF (2013) Assessment of dynamic contrast-enhanced magnetic resonance imaging in the differentiation of malignant from benign orbital masses. Eur J Radiol 82:1506–1511. https://doi.org/10.1016/j.ejrad.2013.03.001

    Article  PubMed  Google Scholar 

  19. Ro SR, Asbach P, Siebert E, Bertelmann E, Hamm B, Erb-Eigner K (2016) Characterization of orbital masses by multiparametric MRI. Eur J Radiol 85:324–336. https://doi.org/10.1016/j.ejrad.2015.11.041

    Article  PubMed  Google Scholar 

  20. Sepahdari AR, Aakalu VK, Setabutr P, Shiehmorteza M, Naheedy JH, Mafee MF (2010) Indeterminate orbital masses: restricted diffusion at MR imaging with echo-planar diffusion-weighted imaging predicts malignancy. Radiology 256:554–564. https://doi.org/10.1148/radiol.10091956

    Article  PubMed  Google Scholar 

  21. Razek AA, Elkhamary S, Mousa A (2011) Differentiation between benign and malignant orbital tumors at 3-T diffusion MR-imaging. Neuroradiology 53:517–522. https://doi.org/10.1007/s00234-011-0838-2

    Article  PubMed  Google Scholar 

  22. Sasaki M, Eida S, Sumi M, Nakamura T (2011) Apparent diffusion coefficient mapping for Sinonasal diseases: differentiation of benign and malignant lesions. AJNR Am J Neuroradiol 32:1100–1106. https://doi.org/10.3174/ajnr.A2434

    Article  CAS  PubMed  Google Scholar 

  23. Yang BT, Song ZL, Wang YZ, Dong JY, Wang ZC (2013) Solitary fibrous tumor of the sinonasal cavity: CT and MR imaging findings. AJNR Am J Neuroradiol 34:1248–1251. https://doi.org/10.3174/ajnr.A3485

    Article  CAS  PubMed  Google Scholar 

  24. Kiessling F, Jugold M, Woenne EC, Brix G (2007) Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging. Eur Radiol 17:2136–2148. https://doi.org/10.1007/s00330-006-0566-x

    Article  PubMed  Google Scholar 

  25. Lu S, Gao Q, Yu J, Li Y, Cao P, Shi H, Hong X (2016) Utility of dynamic contrast-enhanced magnetic resonance imaging for differentiating glioblastoma, primary central nervous system lymphoma and brain metastatic tumour. Eur J Radiol 85:1722–1727. https://doi.org/10.1016/j.ejrad.2016.07.005

    Article  PubMed  Google Scholar 

  26. Mills SJ, Soh C, Rose CJ, Cheung S, Zhao S, Parker GJ, Jackson A (2010) Candidate biomarkers of extravascular extracellular space: a direct comparison of apparent diffusion coefficient and dynamic contrast-enhanced MR imaging–derived measurement of the volume of the extravascular extracellular space in glioblastoma multiforme. AJNR Am J Neuroradiol 31:549–553. https://doi.org/10.3174/ajnr.A1844

    Article  CAS  PubMed  Google Scholar 

  27. Arlinghaus LR, Li X, Rahman AR, Welch EB, Xu L, Gore JC, Yankeelov TE (2011) On the relationship between the apparent diffusion coefficient and extravascular extracellular volume fraction in human breast cancer. Magn Reson Imaging 2011(29):630–638. https://doi.org/10.1016/j.mri.2011.02.004

    Article  Google Scholar 

  28. Heye T, Merkle EM, Reiner CS, Davenport MS, Horvath JJ, Feuerlein S, Breault SR, Gall P, Bashir MR, Dale BM, Kiraly AP, Boll DT (2013) Reproducibility of dynamic contrast-enhanced MR imaging. Part II. Comparison of intra- and interobserver variability with manual region of interest placement versus semiautomatic lesion segmentation and histogram analysis. Radiology 266:812–821. https://doi.org/10.1148/radiol.12120255

    Article  PubMed  Google Scholar 

  29. Wang J, Takashima S, Takayama F, Kawakami S, Saito A, Matsushita T, Momose M, Ishiyama T (2001) Head and neck lesions: characterization with diffusion-weighted echo-planar MR imaging. Radiology 220:621–630. https://doi.org/10.1148/radiol.2202010063

    Article  CAS  PubMed  Google Scholar 

  30. Habermanna CR, Arndta C, Graessnerd J, Diestel L, Petersen KU, Reitmeier F, Ussmueller JO, Adam G, Jaehne M (2009) Diffusion-weighted echo-planar MR imaging of primary parotid gland tumors: is a prediction of different histologic subtypes possible? AJNR Am J Neuroradiol 30:591–596. https://doi.org/10.3174/ajnr.A1412

    Article  Google Scholar 

Download references

Funding

This study was funded by Beijing Municipal Administration of Hospitals’ Ascent Plan (DFL20190203), Beijing Municipal Administration of Hospitals’ Clinical Medicine Development of Special Funding Support (ZYLX201704), and High Level Health Technical Personnel of Bureau of Health in Beijing (2014-2-005)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfang Xian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.

Informed consent

For this type of retrospective study formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Song, L., Guo, J. et al. Value of quantitative multiparametric MRI in differentiating pleomorphic adenomas from malignant epithelial tumors in lacrimal gland. Neuroradiology 62, 1141–1147 (2020). https://doi.org/10.1007/s00234-020-02455-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-020-02455-3

Keywords

Navigation