Skip to main content

Advertisement

Log in

Overcoming challenges of the human spinal cord tractography for routine clinical use: a review

  • Review
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

The spinal cord (SC) is a dense network of billions of fibers in a small volume surrounded by bones that makes tractography difficult to perform. We aim to provide a review collecting all technical settings of SC tractography and propose the optimal set of parameters to perform a good SC tractography rendering. The MEDLINE database was searched for articles reporting “spinal cord” “tractography” in “humans”. Studies were selected only when tractography rendering was displayed and MRI acquisition and tracking parameters detailed. From each study, clinical context, imaging acquisition settings, fiber tracking parameters, region of interest (ROI) design, and quality of the tractography rendering were extracted. Quality of tractography rendering was evaluated by several objective criteria proposed herein. According to the reported studies, to obtain a good tractography rendering, diffusion tensor imaging acquisition should be performed with 1.5 or 3 Tesla MRI, in the axial plane, with > 20 directions; b value: 1000 s mm−2; right-left phase-encoding direction for cervical SC; isotropic voxel size; and no slice gap. Concerning the tracking process, it should be performed with determinist approach, fractional anisotropy threshold between 0.15 and 0.2, and curvature threshold of 40°. ROI design is an essential step for providing good tractography rendering, and their placement has to consider partial volume effects, magnetic susceptibility effects, and motion artifacts. The review reported herein highlights that successful SC tractography depends on many factors (imaging acquisition settings, fiber tracking parameters, and ROI design) to obtain a good SC tractography rendering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AVM:

Arteriovenous malformation

CSF:

Cerebrospinal fluid

CSM:

Cervical spondylotic myelopathy

DTI:

Diffusion tensor imaging

FA:

Fractional anisotropy

MRI:

Magnetic resonance imagery

MS:

Multiple sclerosis

ROA:

Region of avoidance

ROI:

Region of interest

SCI:

Spinal cord injury

T:

Tesla

TE:

Echo time

TR:

Repetition time

References

  1. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    Article  CAS  Google Scholar 

  2. Fernández-Miranda JC, Rhoton AL, Alvarez-Linera J et al (2008) Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery 62:989–1026; discussion 1026-1028. https://doi.org/10.1227/01.neu.0000333767.05328.49

    Article  PubMed  Google Scholar 

  3. Jacquesson T, Frindel C, Kocevar G et al (2018) Overcoming challenges of cranial nerve tractography: a targeted review. Neurosurgery. https://doi.org/10.1093/neuros/nyy229

  4. Thurnher MM, Law M (2009) Diffusion-weighted imaging, diffusion-tensor imaging, and fiber tractography of the spinal cord. Magn Reson Imaging Clin N Am 17:225–244. https://doi.org/10.1016/j.mric.2009.02.004

    Article  PubMed  Google Scholar 

  5. Maier SE, Mamata H (2005) Diffusion tensor imaging of the spinal cord. Ann N Y Acad Sci 1064:50–60. https://doi.org/10.1196/annals.1340.011

    Article  PubMed  Google Scholar 

  6. Sąsiadek MJ, Szewczyk P, Bladowska J (2012) Application of diffusion tensor imaging (DTI) in pathological changes of the spinal cord. Med Sci Monit 18:RA73–RA79. https://doi.org/10.12659/msm.882891

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chan T-Y, Li X, Mak K-C, Cheung JPY, Luk KDK, Hu Y (2015) Normal values of cervical spinal cord diffusion tensor in young and middle-aged healthy Chinese. Eur Spine J 24:2991–2998. https://doi.org/10.1007/s00586-015-4144-2

    Article  PubMed  Google Scholar 

  8. Maier SE (2007) Examination of spinal cord tissue architecture with magnetic resonance diffusion tensor imaging. Neurotherapeutics 4:453–459. https://doi.org/10.1016/j.nurt.2007.05.003

    Article  PubMed  Google Scholar 

  9. Taso M, Girard OM, Duhamel G, le Troter A, Feiweier T, Guye M, Ranjeva JP, Callot V (2016) Tract-specific and age-related variations of the spinal cord microstructure: a multi-parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT). NMR Biomed 29:817–832. https://doi.org/10.1002/nbm.3530

    Article  PubMed  Google Scholar 

  10. Hori M, Ishigame K, Aoki S, Kumagai H, Araki T (2007) Diffusion tensor imaging and 3D tractography of the cervical spinal cord using the ECG-gated line-scan technique. A feasibility study. Neuroradiol J 20:574–579. https://doi.org/10.1177/197140090702000517

    Article  CAS  PubMed  Google Scholar 

  11. Xiangshui M, Xiangjun C, Xiaoming Z, Qingshi Z, Yi C, Chuanqiang Q, Xiangxing M, Chuanfu L, Jinwen H (2011) 3 T magnetic resonance diffusion tensor imaging and fibre tracking in cervical myelopathy. https://www.ncbi.nlm.nih.gov/pubmed/20451014. Accessed 2 Jan 2019

  12. Budzik J-F, Balbi V, Le Thuc V et al (2011) Diffusion tensor imaging and fibre tracking in cervical spondylotic myelopathy. Eur Radiol 21:426–433. https://doi.org/10.1007/s00330-010-1927-z

    Article  PubMed  Google Scholar 

  13. Lee JW, Kim JH, Park JB, Park KW, Yeom JS, Lee GY, Kang HS (2011) Diffusion tensor imaging and fiber tractography in cervical compressive myelopathy: preliminary results. Skelet Radiol 40:1543–1551. https://doi.org/10.1007/s00256-011-1161-z

    Article  Google Scholar 

  14. Wang W, Qin W, Hao N, Wang Y, Zong G (2012) Diffusion tensor imaging in spinal cord compression. Acta Radiol 53:921–928. https://doi.org/10.1258/ar.2012.120271

    Article  PubMed  Google Scholar 

  15. Cui J-L, Li X, Chan T-Y, Mak KC, Luk KDK, Hu Y (2015) Quantitative assessment of column-specific degeneration in cervical spondylotic myelopathy based on diffusion tensor tractography. Eur Spine J 24:41–47. https://doi.org/10.1007/s00586-014-3522-5

    Article  PubMed  Google Scholar 

  16. Hori M, Tsutsumi S, Yasumoto Y, Ito M, Suzuki M, Tanaka FS, Kyogoku S, Nakamura M, Tabuchi T, Fukunaga I, Suzuki Y, Kamagata K, Masutani Y, Aoki S (2014) Cervical spondylosis: evaluation of microstructural changes in spinal cord white matter and gray matter by diffusional kurtosis imaging. Magn Reson Imaging 32:428–432. https://doi.org/10.1016/j.mri.2014.01.018

    Article  PubMed  Google Scholar 

  17. Ducreux D, Lepeintre J-F, Fillard P, Loureiro C, Tadié M, Lasjaunias P (2006) MR diffusion tensor imaging and fiber tracking in 5 spinal cord astrocytomas. AJNR Am J Neuroradiol 27:214–216

    CAS  PubMed  Google Scholar 

  18. Choudhri AF, Whitehead MT, Klimo P et al (2014) Diffusion tensor imaging to guide surgical planning in intramedullary spinal cord tumors in children. Neuroradiology 56:169–174. https://doi.org/10.1007/s00234-013-1316-9

    Article  PubMed  PubMed Central  Google Scholar 

  19. Czernicki T, Maj E, Podgórska A, Kunert P, Prokopienko M, Nowak A, Cieszanowski A, Marchel A (2017) Diffusion tensor tractography of pyramidal tracts in patients with brainstem and intramedullary spinal cord tumors: relationship with motor deficits and intraoperative MEP changes. J Magn Reson Imaging 46:715–723. https://doi.org/10.1002/jmri.25578

    Article  PubMed  Google Scholar 

  20. Kim HJ, Lee JW, Lee E, Kim SG, Kang Y, Ahn JM, Kang HS (2017) Diffusion tensor imaging in inflammatory and neoplastic intramedullary spinal cord lesions: focusing on Fiber tracking. J Kor Soc Radiol 76:111. https://doi.org/10.3348/jksr.2017.76.2.111

    Article  Google Scholar 

  21. Wheeler-Kingshott CAM, Hickman SJ, Parker GJM, Ciccarelli O, Symms MR, Miller DH, Barker GJ (2002) Investigating cervical spinal cord structure using axial diffusion tensor imaging. Neuroimage 16:93–102. https://doi.org/10.1006/nimg.2001.1022

    Article  PubMed  Google Scholar 

  22. Facon D, Ozanne A, Fillard P, Lepeintre JF, Tournoux-Facon C, Ducreux D (2005) MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol 26:1587–1594

    PubMed  Google Scholar 

  23. Tsuchiya K, Fujikawa A, Suzuki Y (2005) Diffusion tractography of the cervical spinal cord by using parallel imaging. AJNR Am J Neuroradiol 26:398–400

    PubMed  Google Scholar 

  24. Lee JW, Kim JH, Kang HS, Lee JS, Choi JY, Yeom JS, Kim HJ, Chung HW (2006) Optimization of acquisition parameters of diffusion-tensor magnetic resonance imaging in the spinal cord. Investig Radiol 41:553–559. https://doi.org/10.1097/01.rli.0000221325.03899.48

    Article  CAS  Google Scholar 

  25. Ozanne A, Krings T, Facon D, Fillard P, Dumas JL, Alvarez H, Ducreux D, Lasjaunias P (2007) MR diffusion tensor imaging and fiber tracking in spinal cord arteriovenous malformations: a preliminary study. AJNR Am J Neuroradiol 28:1271–1279. https://doi.org/10.3174/ajnr.A0541

    Article  CAS  PubMed  Google Scholar 

  26. Tsuchiya K, Fujikawa A, Honya K, Nitatori T, Suzuki Y (2008) Diffusion tensor tractography of the lower spinal cord. Neuroradiology 50:221–225. https://doi.org/10.1007/s00234-007-0335-9

    Article  PubMed  Google Scholar 

  27. Van Hecke W, Leemans A, Sijbers J et al (2008) A tracking-based diffusion tensor imaging segmentation method for the detection of diffusion-related changes of the cervical spinal cord with aging. J Magn Reson Imaging 27:978–991. https://doi.org/10.1002/jmri.21338

    Article  PubMed  Google Scholar 

  28. van Hecke W, Nagels G, Emonds G, Leemans A, Sijbers J, van Goethem J, Parizel PM (2009) A diffusion tensor imaging group study of the spinal cord in multiple sclerosis patients with and without T2 spinal cord lesions. J Magn Reson Imaging 30:25–34. https://doi.org/10.1002/jmri.21817

    Article  PubMed  Google Scholar 

  29. Chang Y, Jung T-D, Yoo DS, Hyun JK (2010) Diffusion tensor imaging and fiber tractography of patients with cervical spinal cord injury. J Neurotrauma 27:2033–2040. https://doi.org/10.1089/neu.2009.1265

    Article  PubMed  Google Scholar 

  30. Filippi CG, Andrews T, Gonyea JV, Linnell G, Cauley KA (2010) Magnetic resonance diffusion tensor imaging and tractography of the lower spinal cord: application to diastematomyelia and tethered cord. Eur Radiol 20:2194–2199. https://doi.org/10.1007/s00330-010-1797-4

    Article  PubMed  Google Scholar 

  31. Onu M, Gervai P, Cohen-Adad J, Lawrence J, Kornelsen J, Tomanek B, Sboto-Frankenstein UN (2010) Human cervical spinal cord funiculi: investigation with magnetic resonance diffusion tensor imaging. J Magn Reson Imaging 31:829–837. https://doi.org/10.1002/jmri.22101

    Article  PubMed  Google Scholar 

  32. Rajasekaran S, Kanna RM, Karunanithi R, Shetty AP (2010) Diffusion tensor tractography demonstration of partially injured spinal cord tracts in a patient with posttraumatic Brown Sequard syndrome. J Magn Reson Imaging 32:978–981. https://doi.org/10.1002/jmri.22320

    Article  PubMed  Google Scholar 

  33. Smith SA, Jones CK, Gifford A, Belegu V, Chodkowski BA, Farrell JAD, Landman BA, Reich DS, Calabresi PA, McDonald JW, van Zijl PCM (2010) Reproducibility of tract-specific magnetization transfer and diffusion tensor imaging in the cervical spinal cord at 3 tesla. NMR Biomed 23:207–217. https://doi.org/10.1002/nbm.1447

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mohamed FB, Hunter LN, Barakat N, Liu CSJ, Sair H, Samdani AF, Betz RR, Faro SH, Gaughan J, Mulcahey MJ (2011) Diffusion tensor imaging of the pediatric spinal cord at 1.5T: preliminary results. AJNR Am J Neuroradiol 32:339–345. https://doi.org/10.3174/ajnr.A2334

    Article  CAS  PubMed  Google Scholar 

  35. Ukmar M, Montalbano A, Makuc E, Specogna I, Bratina A, Longo R, Cova MA (2012) Fiber density index in the evaluation of the spinal cord in patients with multiple sclerosis. Radiol Med 117:1215–1224. https://doi.org/10.1007/s11547-012-0848-0

    Article  CAS  PubMed  Google Scholar 

  36. Vedantam A, Jirjis MB, Schmit BD, Budde MD, Ulmer JL, Wang MC, Kurpad SN (2012) Diffusion tensor imaging and tractography in Brown-Sequard syndrome. Spinal Cord 50:928–930. https://doi.org/10.1038/sc.2012.94

    Article  CAS  PubMed  Google Scholar 

  37. Wang D, Kong Y, Shi L, Ahuja AAT, Cheng JCY, Chu WCW (2012) Fully automatic stitching of diffusion tensor images in spinal cord. J Neurosci Methods 209:371–378. https://doi.org/10.1016/j.jneumeth.2012.06.026

    Article  PubMed  Google Scholar 

  38. Gasparotti R, Lodoli G, Meoded A, Carletti F, Garozzo D, Ferraresi S (2013) Feasibility of diffusion tensor tractography of brachial plexus injuries at 1.5 T. Investig Radiol 48:104–112. https://doi.org/10.1097/RLI.0b013e3182775267

    Article  Google Scholar 

  39. Lundell H, Barthelemy D, Biering-Sørensen F, Cohen-Adad J, Nielsen JB, Dyrby TB (2013) Fast diffusion tensor imaging and tractography of the whole cervical spinal cord using point spread function corrected echo planar imaging. Magn Reson Med 69:144–149. https://doi.org/10.1002/mrm.24235

    Article  PubMed  Google Scholar 

  40. Rao J-S, Zhao C, Yang Z-Y, Li SY, Jiang T, Fan YB, Li XG (2013) Diffusion tensor tractography of residual fibers in traumatic spinal cord injury: a pilot study. J Neuroradiol 40:181–186. https://doi.org/10.1016/j.neurad.2012.08.008

    Article  PubMed  Google Scholar 

  41. Wen C-Y, Cui J-L, Mak K-C, Luk KDK, Hu Y (2014) Diffusion tensor imaging of somatosensory tract in cervical spondylotic myelopathy and its link with electrophysiological evaluation. Spine J 14:1493–1500. https://doi.org/10.1016/j.spinee.2013.08.052

    Article  PubMed  Google Scholar 

  42. Orman G, Wang KY, Li X, Thompson C, Huisman TAGM, Izbudak I (2015) Diffusion tensor imaging of the cervical spinal cord in children. Childs Nerv Syst 31:1239–1245. https://doi.org/10.1007/s00381-015-2767-6

    Article  PubMed  Google Scholar 

  43. Crombe A, Alberti N, Hiba B, Uettwiller M, Dousset V, Tourdias T (2016) Cervical spinal cord DTI is improved by reduced FOV with specific balance between the number of diffusion gradient directions and averages. AJNR Am J Neuroradiol 37:2163–2170. https://doi.org/10.3174/ajnr.A4850

    Article  CAS  PubMed  Google Scholar 

  44. Alizadeh M, Fisher J, Saksena S, Sultan Y, Conklin CJ, Middleton DM, Finsterbusch J, Krisa L, Flanders AE, Faro SH, Mulcahey MJ, Mohamed FB (2017) Reduced field of view diffusion tensor imaging and fiber tractography of the pediatric cervical and thoracic spinal cord injury. J Neurotrauma 35:452–460. https://doi.org/10.1089/neu.2017.5174

    Article  PubMed  Google Scholar 

  45. Choe AS, Sadowsky CL, Smith SA, van Zijl PCM, Pekar JJ, Belegu V (2017) Subject-specific regional measures of water diffusion are associated with impairment in chronic spinal cord injury. Neuroradiology 59:747–758. https://doi.org/10.1007/s00234-017-1860-9

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wei L-F, Wang S-S, Zheng Z-C, Tian J, Xue L (2017) Analysis of the diffusion tensor imaging parameters of a normal cervical spinal cord in a healthy population. J Spinal Cord Med 40:338–345. https://doi.org/10.1080/10790268.2016.1244905

    Article  PubMed  Google Scholar 

  47. Zhao M, Shi B, Chen T, Zhang Y, Geng T, Qiao L, Zhang M, He L, Zuo H, Wang G (2017) Axial MR diffusion tensor imaging and tractography in clinical diagnosed and pathology confirmed cervical spinal cord astrocytoma. J Neurol Sci 375:43–51. https://doi.org/10.1016/j.jns.2017.01.044

    Article  PubMed  Google Scholar 

  48. Antherieu P, Levy R, De Saint DT et al (2018) Diffusion tensor imaging (DTI) and tractography of the spinal cord in pediatric population with spinal lipomas: preliminary study. Childs Nerv Syst 35:129–137. https://doi.org/10.1007/s00381-018-3935-2

    Article  PubMed  Google Scholar 

  49. Fukui Y, Hishikawa N, Sato K, Nakano Y, Morihara R, Shang J, Takemoto M, Ohta Y, Yamashita T, Abe K (2018) Detecting spinal pyramidal tract of amyotrophic lateral sclerosis patients with diffusion tensor tractography. Neurosci Res 133:58–63. https://doi.org/10.1016/j.neures.2017.11.005

    Article  PubMed  Google Scholar 

  50. Dauleac C, Frindel C, Cotton F, Pelissou-Guyotat I (2019) Tractography-based surgical strategy for cavernoma of the conus medullaris: case illustration. J Neurosurg Spine:1–2. https://doi.org/10.3171/2019.10.SPINE19947

  51. Vannesjo SJ, Miller KL, Clare S, Tracey I (2018) Spatiotemporal characterization of breathing-induced B0 field fluctuations in the cervical spinal cord at 7T. Neuroimage 167:191–202. https://doi.org/10.1016/j.neuroimage.2017.11.031

    Article  PubMed  PubMed Central  Google Scholar 

  52. Barry RL, Vannesjo SJ, By S, Gore JC, Smith SA (2018) Spinal cord MRI at 7T. Neuroimage 168:437–451. https://doi.org/10.1016/j.neuroimage.2017.07.003

    Article  PubMed  Google Scholar 

  53. Dauleac C, Jacquesson T, Mertens P (2019) Anatomy of the human spinal cord arachnoid cisterns: applications for spinal cord surgery. J Neurosurg Spine 31:1–8. https://doi.org/10.3171/2019.4.SPINE19404

    Article  Google Scholar 

  54. Noguerol M, Barousse R, Amrhein TJ et al (2020) Optimizing diffusion-tensor imaging acquisition for spinal cord assessment: physical basis and technical adjustments. Radiographics. https://doi.org/10.1148/rg.2020190058

  55. Calabrese E, Adil SM, Cofer G, Perone CS, Cohen-Adad J, Lad SP, Johnson GA (2018) Postmortem diffusion MRI of the entire human spinal cord at microscopic resolution. Neuroimage Clin 18:963–971. https://doi.org/10.1016/j.nicl.2018.03.029

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kim LH, Lee EH, Galvez M et al (2019) Reduced field of view echo-planar imaging diffusion tensor MRI for pediatric spinal tumors. J Neurosurg Spine:1–9. https://doi.org/10.3171/2019.4.SPINE19178

  57. Yiannakas MC, Grussu F, Louka P, Prados F, Samson RS, Battiston M, Altmann DR, Ourselin S, Miller DH, Gandini Wheeler-Kingshott CAM (2016) Reduced field-of-view diffusion-weighted imaging of the lumbosacral enlargement: a pilot in vivo study of the healthy spinal cord at 3T. PLoS One 11:e0164890. https://doi.org/10.1371/journal.pone.0164890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gaggl W, Jesmanowicz A, Prost RW (2014) High-resolution reduced field of view diffusion tensor imaging using spatially selective RF pulses. Magn Reson Med 72:1668–1679. https://doi.org/10.1002/mrm.25092

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ducreux D (2008) Tenseur de diffusion et tractographie de la moelle épinière : applications cliniques - Syringomyelie. http://www.syringomyelie.fr/spip.php?article49. Accessed 2 Jan 2019

  60. Magnetism. In: Questions and Answers in MRI. http://mriquestions.com/readout-segmented-dwi.html. Accessed 2 Jul 2019

  61. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reac... - PubMed - NCBI. https://www.ncbi.nlm.nih.gov/pubmed/?term=High+Resolution+Diffusion-Weighted+Imaging+Using+Readout-Segmented+Echo-Planar+Imaging%2C+Parallel+Imaging+and+a+Two-Dimensional+Navigator-Based+Reacquisition. Accessed 2 Jul 2019

  62. Toktas ZO, Tanrıkulu B, Koban O et al (2016) Diffusion tensor imaging of cervical spinal cord: a quantitative diagnostic tool in cervical spondylotic myelopathy. J Craniovertebr Junction Spine 7:26–30. https://doi.org/10.4103/0974-8237.176617

    Article  PubMed  PubMed Central  Google Scholar 

  63. Egger K, Hohenhaus M, Van Velthoven V et al (2016) Spinal diffusion tensor tractography for differentiation of intramedullary tumor-suspected lesions. Eur J Radiol 85:2275–2280. https://doi.org/10.1016/j.ejrad.2016.10.018

    Article  CAS  PubMed  Google Scholar 

  64. Jones JGA, Cen SY, Lebel RM, Hsieh PC, Law M (2013) Diffusion tensor imaging correlates with the clinical assessment of disease severity in cervical spondylotic myelopathy and predicts outcome following surgery. AJNR Am J Neuroradiol 34:471–478. https://doi.org/10.3174/ajnr.A3199

    Article  CAS  PubMed  Google Scholar 

  65. Ducreux D, Fillard P, Facon D, Ozanne A, Lepeintre JF, Renoux J, Tadié M, Lasjaunias P (2007) Diffusion tensor magnetic resonance imaging and fiber tracking in spinal cord lesions: current and future indications. Neuroimaging Clin N Am 17:137–147. https://doi.org/10.1016/j.nic.2006.11.005

    Article  PubMed  Google Scholar 

  66. Liu X, Tian W, Kolar B, Hu R, Huang Y, Huang J, Ekholm S (2014) Advanced MR diffusion tensor imaging and perfusion weighted imaging of intramedullary tumors and tumor like lesions in the cervicomedullary junction region and the cervical spinal cord. J Neuro-Oncol 116:559–566. https://doi.org/10.1007/s11060-013-1323-z

    Article  Google Scholar 

  67. Sundberg LM, Herrera JJ, Narayana PA (2010) In vivo longitudinal MRI and behavioral studies in experimental spinal cord injury. J Neurotrauma 27:1753–1767. https://doi.org/10.1089/neu.2010.1369

    Article  PubMed  PubMed Central  Google Scholar 

  68. Deo AA, Grill RJ, Hasan KM, Narayana PA (2006) In vivo serial diffusion tensor imaging of experimental spinal cord injury. J Neurosci Res 83:801–810. https://doi.org/10.1002/jnr.20783

    Article  CAS  PubMed  Google Scholar 

  69. Kim JH, Loy DN, Wang Q, Budde MD, Schmidt RE, Trinkaus K, Song SK (2010) Diffusion tensor imaging at 3 hours after traumatic spinal cord injury predicts long-term locomotor recovery. J Neurotrauma 27:587–598. https://doi.org/10.1089/neu.2009.1063

    Article  PubMed  PubMed Central  Google Scholar 

  70. Agosta F, Absinta M, Sormani MP, Ghezzi A, Bertolotto A, Montanari E, Comi G, Filippi M (2007) In vivo assessment of cervical cord damage in MS patients: a longitudinal diffusion tensor MRI study. Brain 130:2211–2219. https://doi.org/10.1093/brain/awm110

    Article  CAS  PubMed  Google Scholar 

  71. Cruz LCH, Domingues RC, Gasparetto EL (2009) Diffusion tensor imaging of the cervical spinal cord of patients with relapsing-remising multiple sclerosis: a study of 41 cases. Arq Neuropsiquiatr 67:391–395

    Article  Google Scholar 

  72. Renoux J, Facon D, Fillard P, Huynh I, Lasjaunias P, Ducreux D (2006) MR diffusion tensor imaging and fiber tracking in inflammatory diseases of the spinal cord. AJNR Am J Neuroradiol 27:1947–1951

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Idea of article: Corentin Dauleac and Timothee Jacquesson; literature search: Corentin Dauleac; data analysis: Corentin Dauleac; conceptualization: Corentin Dauleac and Timothee Jacquesson; methodology: Corentin Dauleac and Carole Frindel; formal analysis and investigation: Corentin Dauleac and Carole Frindel; writing-original draft preparation: Corentin Dauleac and Carole Frindel; writing-review and editing: Corentin Dauleac, Carole Frindel, Patrick Mertens, Timothee Jacquesson, and Francois Cotton; and supervision: Carole Frindel and François Cotton

Corresponding author

Correspondence to Corentin Dauleac.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards in the studies selected for this review.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dauleac, C., Frindel, C., Mertens, P. et al. Overcoming challenges of the human spinal cord tractography for routine clinical use: a review. Neuroradiology 62, 1079–1094 (2020). https://doi.org/10.1007/s00234-020-02442-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-020-02442-8

Keywords

Navigation