Dissociative changes in gray matter volume following electroconvulsive therapy in major depressive disorder: a longitudinal structural magnetic resonance imaging study

Abstract

Purpose

Electroconvulsive therapy (ECT), has become a widely applied potent treatment in clinical practice for major depressive disorder (MDD) over decades. However, due to its nonspecific and spatially unfocused nature, the underlying mechanisms of ECT remain unclear.

Methods

In this longitudinal study, 11 patients with MDD underwent magnetic resonance imaging (MRI) before and after ECT at three different time points. A longitudinal voxel-based morphology approach was performed to characterize dynamic changes in brain gray matter volume (GMV). Twelve age- and sex-matched healthy controls were recruited to identify structural brain changes of patients with MDD before and after ECT.

Results

The brain GMV was globally found to increase shortly after a series of ECT, and then decrease 1 month after ECT treatment exposure. This fluctuating tendency was localized to the bilateral inferior parietal lobes, bilateral insula, and right superior temporal cortex. After the global GMV was corrected, there were only significant global effect increases in GMV in the left anterior hippocampus and right caudate, which were both significantly correlated with the improvement of depression symptoms. However, 1 month after ECT treatments, there was still significantly reduced GMV following patients with MDD compared to healthy controls in the left putamen, right anterior cingulate, and left inferior temporal cortex, which was observed before ECT.

Conclusions

These findings indicate that ECT in patients with MDD is closely associated with dissociative structural changes. The locally enhanced GMV in limbic areas may reflect that the ECT-related brain compensatory mechanisms contribute to brain structure recovery in MDD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62. https://doi.org/10.1136/jnnp.23.1.56

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Kellner CH, Knapp RG, Petrides G, Rummans TA, Husain MM, Rasmussen K, Mueller M, Bernstein HJ, O'Connor K, Smith G, Biggs M, Bailine SH, Malur C, Yim E, McClintock S, Sampson S, Fink M (2006) Continuation electroconvulsive therapy vs pharmacotherapy for relapse prevention in major depression: a multisite study from the Consortium for Research in Electroconvulsive Therapy (CORE). Arch Gen Psychiatry 63(12):1337–1344. https://doi.org/10.1001/archpsyc.63.12.1337

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Wang J, Wei Q, Bai T, Zhou X, Sun H, Becker B, Tian Y, Wang K, Kendrick K (2017) Electroconvulsive therapy selectively enhanced feedforward connectivity from fusiform face area to amygdala in major depressive disorder. Soc Cogn Affect Neurosci 12(12):1983–1992. https://doi.org/10.1093/scan/nsx100

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Wang L, Wei Q, Wang C, Xu J, Wang K, Tian Y, Wang J (2019) Altered functional connectivity patterns of insular subregions in major depressive disorder after electroconvulsive therapy. Brain Imaging Behav. https://doi.org/10.1007/s11682-018-0013-z

  5. 5.

    Fink M (2001) Convulsive therapy: a review of the first 55 years. J Affect Disord 63(1–3):1–15

    CAS  Article  Google Scholar 

  6. 6.

    Oltedal L, Kessler U, Ersland L, Gruner R, Andreassen OA, Haavik J, Hoff PI, Hammar A, Dale AM, Hugdahl K, Oedegaard KJ (2015) Effects of ECT in treatment of depression: study protocol for a prospective neuroradiological study of acute and longitudinal effects on brain structure and function. BMC Psychiatry 15:94. https://doi.org/10.1186/s12888-015-0477-y

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Redlich R, Opel N, Grotegerd D, Dohm K, Zaremba D, Burger C, Munker S, Muhlmann L, Wahl P, Heindel W, Arolt V, Alferink J, Zwanzger P, Zavorotnyy M, Kugel H, Dannlowski U (2016) Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data. JAMA Psychiatry 73(6):557–564. https://doi.org/10.1001/jamapsychiatry.2016.0316

    Article  PubMed  Google Scholar 

  8. 8.

    Abbott CC, Lemke NT, Gopal S, Thoma RJ, Bustillo J, Calhoun VD, Turner JA (2013) Electroconvulsive therapy response in major depressive disorder: a pilot functional network connectivity resting state FMRI investigation. Front Psychiatry 4:10. https://doi.org/10.3389/fpsyt.2013.00010

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Devanand DP, Dwork AJ, Hutchinson ER, Bolwig TG, Sackeim HA (1994) Does ECT alter brain structure? Am J Psychiatry 151(7):957–970. https://doi.org/10.1176/ajp.151.7.957

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Haq AU, Sitzmann AF, Goldman ML, Maixner DF, Mickey BJ (2015) Response of depression to electroconvulsive therapy: a meta-analysis of clinical predictors. J Clin Psychiatry 76(10):1374–1384. https://doi.org/10.4088/JCP.14r09528

    Article  PubMed  Google Scholar 

  11. 11.

    Joshi SH, Espinoza RT, Pirnia T, Shi J, Wang Y, Ayers B, Leaver A, Woods RP, Narr KL (2016) Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depression. Biol Psychiatry 79(4):282–292. https://doi.org/10.1016/j.biopsych.2015.02.029

    Article  PubMed  Google Scholar 

  12. 12.

    Dwork AJ, Arango V, Underwood M, Ilievski B, Rosoklija G, Sackeim HA, Lisanby SH (2004) Absence of histological lesions in primate models of ECT and magnetic seizure therapy. Am J Psychiatry 161(3):576–578. https://doi.org/10.1176/appi.ajp.161.3.576

    Article  PubMed  Google Scholar 

  13. 13.

    Bouckaert F, Dols A, Emsell L, De Winter FL, Vansteelandt K, Claes L, Sunaert S, Stek M, Sienaert P, Vandenbulcke M (2016) Relationship between hippocampal volume, serum BDNF, and depression severity following electroconvulsive therapy in late-life depression. Neuropsychopharmacology 41(11):2741–2748. https://doi.org/10.1038/npp.2016.86

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Cano M, Martinez-Zalacain I, Bernabeu-Sanz A, Contreras-Rodriguez O, Hernandez-Ribas R, Via E, de Arriba-Arnau A, Galvez V, Urretavizcaya M, Pujol J, Menchon JM, Cardoner N, Soriano-Mas C (2017) Brain volumetric and metabolic correlates of electroconvulsive therapy for treatment-resistant depression: a longitudinal neuroimaging study. Transl Psychiatry 7(2):e1023. https://doi.org/10.1038/tp.2016.267

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Oltedal L, Narr KL, Abbott C, Anand A, Argyelan M, Bartsch H, Dannlowski U, Dols A, van Eijndhoven P, Emsell L, Erchinger VJ, Espinoza R, Hahn T, Hanson LG, Hellemann G, Jorgensen MB, Kessler U, Oudega ML, Paulson OB, Redlich R, Sienaert P, Stek ML, Tendolkar I, Vandenbulcke M, Oedegaard KJ, Dale AM (2018) Volume of the human hippocampus and clinical response following electroconvulsive therapy. Biol Psychiatry 84(8):574–581. https://doi.org/10.1016/j.biopsych.2018.05.017

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Gryglewski G, Baldinger-Melich P, Seiger R, Godbersen GM, Michenthaler P, Klobl M, Spurny B, Kautzky A, Vanicek T, Kasper S, Frey R, Lanzenberger R (2019) Structural changes in amygdala nuclei, hippocampal subfields and cortical thickness following electroconvulsive therapy in treatment-resistant depression: longitudinal analysis. Br J Psychiatry 214(3):159–167. https://doi.org/10.1192/bjp.2018.224

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Dukart J, Regen F, Kherif F, Colla M, Bajbouj M, Heuser I, Frackowiak RS, Draganski B (2014) Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders. Proc Natl Acad Sci U S A 111(3):1156–1161. https://doi.org/10.1073/pnas.1321399111

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    van Eijndhoven P, Mulders P, Kwekkeboom L, van Oostrom I, van Beek M, Janzing J, Schene A, Tendolkar I (2016) Bilateral ECT induces bilateral increases in regional cortical thickness. Transl Psychiatry 6(8):e874. https://doi.org/10.1038/tp.2016.139

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Abbott CC, Jones T, Lemke NT, Gallegos P, McClintock SM, Mayer AR, Bustillo J, Calhoun VD (2014) Hippocampal structural and functional changes associated with electroconvulsive therapy response. Transl Psychiatry 4:e483. https://doi.org/10.1038/tp.2014.124

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Depping MS, Nolte HM, Hirjak D, Palm E, Hofer S, Stieltjes B, Maier-Hein K, Sambataro F, Wolf RC, Thomann PA (2017) Cerebellar volume change in response to electroconvulsive therapy in patients with major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 73:31–35. https://doi.org/10.1016/j.pnpbp.2016.09.007

    Article  Google Scholar 

  21. 21.

    Ota M, Noda T, Sato N, Okazaki M, Ishikawa M, Hattori K, Hori H, Sasayama D, Teraishi T, Sone D, Kunugi H (2015) Effect of electroconvulsive therapy on gray matter volume in major depressive disorder. J Affect Disord 186:186–191. https://doi.org/10.1016/j.jad.2015.06.051

    Article  PubMed  Google Scholar 

  22. 22.

    Gibbons RD, Hedeker D, Waternaux C, Davis JM (1988) Random regression models: a comprehensive approach to the analysis of longitudinal psychiatric data. Psychopharmacol Bull 24(3):438–443

    CAS  PubMed  Google Scholar 

  23. 23.

    Fosse R, Read J (2013) Electroconvulsive treatment: hypotheses about mechanisms of action. Front Psychiatry 4:94. https://doi.org/10.3389/fpsyt.2013.00094

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Nordanskog P, Larsson MR, Larsson EM, Johanson A (2014) Hippocampal volume in relation to clinical and cognitive outcome after electroconvulsive therapy in depression. Acta Psychiatr Scand 129(4):303–311. https://doi.org/10.1111/acps.12150

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Drevets WC (2000) Neuroimaging studies of mood disorders. Biol Psychiatry 48(8):813–829

    CAS  Article  Google Scholar 

  26. 26.

    Campbell S, MacQueen G (2006) An update on regional brain volume differences associated with mood disorders. Curr Opin Psychiatry 19(1):25–33. https://doi.org/10.1097/01.yco.0000194371.47685.f2

    Article  PubMed  Google Scholar 

  27. 27.

    Fanselow MS (2000) Contextual fear, gestalt memories, and the hippocampus. Behav Brain Res 110(1–2):73–81

    CAS  Article  Google Scholar 

  28. 28.

    Davidson RJ, Lewis DA, Alloy LB, Amaral DG, Bush G, Cohen JD, Drevets WC, Farah MJ, Kagan J, McClelland JL, Nolen-Hoeksema S, Peterson BS (2002) Neural and behavioral substrates of mood and mood regulation. Biol Psychiatry 52(6):478–502

    Article  Google Scholar 

  29. 29.

    Becker S, Wojtowicz JM (2007) A model of hippocampal neurogenesis in memory and mood disorders. Trends Cogn Sci 11(2):70–76. https://doi.org/10.1016/j.tics.2006.10.013

    Article  PubMed  Google Scholar 

  30. 30.

    Videbech P, Ravnkilde B (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161(11):1957–1966. https://doi.org/10.1176/appi.ajp.161.11.1957

    Article  PubMed  Google Scholar 

  31. 31.

    Wilkinson ST, Sanacora G, Bloch MH (2017) Hippocampal volume changes following electroconvulsive therapy: a systematic review and meta-analysis. Biol Psychiatry Cogn Neurosci Neuroimaging 2(4):327–335. https://doi.org/10.1016/j.bpsc.2017.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Jacobsen JP, Mork A (2004) The effect of escitalopram, desipramine, electroconvulsive seizures and lithium on brain-derived neurotrophic factor mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-HIAA levels. Brain Res 1024(1–2):183–192. https://doi.org/10.1016/j.brainres.2004.07.065

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Li B, Suemaru K, Cui R, Kitamura Y, Gomita Y, Araki H (2006) Repeated electroconvulsive stimuli increase brain-derived neurotrophic factor in ACTH-treated rats. Eur J Pharmacol 529(1–3):114–121. https://doi.org/10.1016/j.ejphar.2005.11.009

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Gersner R, Toth E, Isserles M, Zangen A (2010) Site-specific antidepressant effects of repeated subconvulsive electrical stimulation: potential role of brain-derived neurotrophic factor. Biol Psychiatry 67(2):125–132. https://doi.org/10.1016/j.biopsych.2009.09.015

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Yrondi A, Peran P, Sauvaget A, Schmitt L, Arbus C (2018) Structural-functional brain changes in depressed patients during and after electroconvulsive therapy. Acta Neuropsychiatr 30(1):17–28. https://doi.org/10.1017/neu.2016.62

    Article  PubMed  Google Scholar 

  36. 36.

    Sheline YI (2003) Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry 54(3):338–352

    Article  Google Scholar 

  37. 37.

    Xu H, Guo C, Li H, Gao L, Zhang M, Wang Y (2019) Structural and functional amygdala abnormalities in hemifacial spasm. Front Neurol 10:393. https://doi.org/10.3389/fneur.2019.00393

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Xu H, Wang X, Chen Z, Bai G, Yin B, Wang S, Sun C, Gan S, Wang Z, Cao J, Niu X, Shao M, Gu C, Hu L, Ye L, Li D, Yan Z, Zhang M, Bai L (2018) Longitudinal changes of caudate-based resting state functional connectivity in mild traumatic brain injury. Front Neurol 9:467. https://doi.org/10.3389/fneur.2018.00467

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Zhenliang Jiang (Ryerson University) for data analysis and providing language help for this manuscript, and thank Dr. Georgia Hadjis for his advice writing this article and language help.

Funding

This work was supported by the National Natural Science Foundation of China under Grant Nos. 81673832 and 81873177 and the Xianyang Science and Technology Research Program under Grant Nos. 2016k02-86 and 2014k04-05.

Author information

Affiliations

Authors

Contributions

HX and YSZ provided advice writing the manuscript, supervised the design, and provided guidance. HX supervised the statistical analysis. TZ and FFL collected the data, conducted the statistical analysis, and wrote the manuscript.

Corresponding author

Correspondence to Yunsong Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Zhao, T., Luo, F. et al. Dissociative changes in gray matter volume following electroconvulsive therapy in major depressive disorder: a longitudinal structural magnetic resonance imaging study. Neuroradiology 61, 1297–1308 (2019). https://doi.org/10.1007/s00234-019-02276-z

Download citation

Keywords

  • Electroconvulsive therapy
  • Major depressive disorder
  • Longitudinal MRI
  • Dissociative changes