Skip to main content
Log in

The so-called “bovine aortic arch”: a possible biomarker for embolic strokes?

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To examine the prevalence of the so-called bovine aortic arch variation (common origin of the brachiocephalic trunk and the left common carotid artery) in embolic stroke patients, compared with a control group.

Methods

Aortic arch branching patterns were retrospectively evaluated in 474 individuals with (n = 152) and without (n = 322) acute embolic stroke of the anterior circulation. Contrast-enhanced CT scans of the chest and neck (arterial contrast phase, 1–2-mm slice thickness) were used to evaluate aortic arch anatomy. The stroke cohort included 152 patients who were treated for embolic strokes of the anterior circulation between 2008 and 2018. A total of 322 randomly selected patients who had received thoracic CT angiographies within the same time frame were included as a control group.

Results

With a prevalence of 25.7%, the bovine aortic arch variant was significantly more common among patients suffering from embolic strokes, compared with 17.1% of control patients (p = 0.039, OR = 1.67, 95%CI = 1.05–1.97). Stroke patients were more likely to show the bovine arch subtype B (left common carotid artery originating from the brachiocephalic trunk instead of the aortic arch) (10.5% vs. 5.0%, p = 0.039, OR = 2.25, 95%CI = 1.09–4.63), while subtype A (V-shaped common aortic origin of the brachiocephalic trunk and the left carotid) was similarly common in both groups. There was no significant difference regarding the frequency of other commonly observed variant branching patterns of the aortic arch.

Conclusion

The bovine aortic arch, particularly the bovine arch subtype B, was significantly more common among embolic stroke patients. This might be due to altered hemodynamic properties within the bovine arch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abramson RG, Burton KR, Yu JPJ, Scalzetti EM, Yankeelov TE, Rosenkrantz AB, Mendiratta-Lala M, Bartholmai BJ, Ganeshan D, Lenchik L, Subramaniam RM (2015) Methods and challenges in quantitative imaging biomarker development. Acad Radiol 22(1):25–32. https://doi.org/10.1016/j.acra.2014.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  2. Scala C, Leone Roberti Maggiore U, Candiani M, Venturini PL, Ferrero S, Greco T, Cavoretto P (2015) Aberrant right subclavian artery in fetuses with Down syndrome: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 46(3):266–276. https://doi.org/10.1002/uog.14774

    Article  CAS  PubMed  Google Scholar 

  3. Borenstein M, Cavoretto P, Allan L, Huggon I, Nicolaides KH (2008) Aberrant right subclavian artery at 11 + 0 to 13 + 6 weeks of gestation in chromosomally normal and abnormal fetuses. Ultrasound Obstet Gynecol 31(1):20–24. https://doi.org/10.1002/uog.5226

    Article  CAS  PubMed  Google Scholar 

  4. Moskowitz WB, Topaz O (2003) The implications of common brachiocephalic trunk on associated congenital cardiovascular defects and their management. Cardiol Young 13:537–543

    Article  PubMed  Google Scholar 

  5. Wacker F, Lippert H, Pabst R (2017) Atlas der arteriellen Variationen. Klassifikation und Häufigkeit, 1st edn. Thieme, Stuttgart

  6. Müller M, Schmitz BL, Pauls S, Schick M, Röhrer S, Kapapa T, Schlötzer W (2011) Variations of the aortic arch - a study on the most common branching patterns. Acta Radiol 52:738–742. https://doi.org/10.1258/ar.2011.110013

    Article  PubMed  Google Scholar 

  7. Berko NS, Jain VR, Godelman A et al. Variants and anomalies of thoracic vasculature on computed tomographic angiography in adults. Journal of Computer Assisted Tomography, 33(4), 523-528. https://doi.org/10.1097/RCT.0b013e3181888343

  8. Jakanani GC, Adair W (2010) Frequency of variations in aortic arch anatomy depicted on multidetector CT. Clin Radiol 65(6):481–487

    Article  CAS  PubMed  Google Scholar 

  9. Natsis KI, Tsitouridis IA, Didagelos MV et al. (2009) Anatomical variations in the branches of the human aortic arch in 633 angiographies: clinical significance and literature review. Surg Radiol Anat 31: 319. https://doi.org/10.1007/s00276-008-0442-2

  10. Ruken Z, Celikyay Y, Koner AE et al (2013) Frequency and imaging findings of variations in human aortic arch anatomy based on multidetector computed tomography data. Clinical Imaging 37(6):1011–1019. https://doi.org/10.1016/j.clinimag.2013.07.008

  11. Vučurević G, Marinković S, Puškaš L, Kovačević I, Tanasković S, Radak D, Ilić A (2013) Anatomy and radiology of the variations of aortic arch branches in 1,266 patients Anatomy and radiology of the variations of aortic arch branches in 1,266 patients 72(2): 113–122. doi: https://doi.org/10.5603/FM.2013.0019

  12. Ergun O, Gunes Tatar I, Birgi E et al (2015) Angiographic evaluation of branching pattern and anatomy of the aortic arch. Turk Kardiyol Dern Ars 43(3):219–226. https://doi.org/10.5543/tkda.2015.49879

  13. Piyavisetpat N, Thaksinawisut P, Tumkosit M (2011) Aortic arch branches’ variations detected on chest CT. Asian Biomed 5(6):817–823. https://doi.org/10.5372/1905-7415.0506.106

  14. Mustafa AG, Allouh MZ, Ghaida JHA, al-Omari M’H, Mahmoud W’A (2017) Branching patterns of the aortic arch: a computed tomography angiography-based study. Surg Radiol Anat 39(3):235–242. https://doi.org/10.1007/s00276-016-1720-z

    Article  PubMed  Google Scholar 

  15. Ogeng’o JA, Olabu BO, Gatonga PM et al (2010) Branching pattern of aortic arch in a kenyan population. J Morphol Sci 27(2):51–55. https://doi.org/10.4103/0976-9668.149116

    Article  CAS  Google Scholar 

  16. Lale P, Toprak U, Kaya T (2014) Variations in the branching pattern of the aortic arch detected with computerized tomography angiography. Advances in Radiology 2014: Article ID 969728. https://doi.org/10.1155/2014/969728

  17. Rea G, Valente T, Iaselli F et al (2014) Multi-detector computed tomography in the evaluation of variants and anomalies of aortic arch and its branching pattern. Ital J Anat Embryol 119(3):180–192. https://doi.org/10.13128/IJAE-15541

    Article  PubMed  Google Scholar 

  18. Wanamaker KM, Amadi CC, Mueller JS, Moraca RJ (2013) Incidence of aortic arch anomalies in patients with thoracic aortic dissections. J Card Surg 28(2):151–154. https://doi.org/10.1111/jocs.12072

    Article  PubMed  Google Scholar 

  19. Dumfarth J, Chou AS, Ziganshin BA, Bhandari R, Peterss S, Tranquilli M, Mojibian H, Fang H, Rizzo JA, Elefteriades JA (2015) Atypical aortic arch branching variants: a novel marker for thoracic aortic disease. J Thorac Cardiovasc Surg 149(6):1586–1592. https://doi.org/10.1016/j.jtcvs.2015.02.019

    Article  PubMed  Google Scholar 

  20. Malone CD, Urbania TH, Crook SES, Hope MD (2012) Bovine aortic arch: a novel association with thoracic aortic dilation. Clin Radiol 67(1):28–31. https://doi.org/10.1016/j.crad.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  21. Hornick M, Moomiaie R, Mojibian H, Ziganshin B, Almuwaqqat Z, Lee ES, Rizzo JA, Tranquilli M, Elefteriades JA (2012) ‘Bovine’ aortic arch – a marker for thoracic aortic disease. Cardiology 123(2):116–124

    Article  PubMed  Google Scholar 

  22. Werner M, Bausback Y, Bräunlich S, Ulrich M, Piorkowski M, Friedenberger J, Schuster J, Botsios S, Scheinert D, Schmidt A (2012) Anatomic variables contributing to a higher periprocedural incidence of stroke and TIA in carotid artery stenting: single center experience of 833 consecutive cases. Catheter Cardiovasc Interv 80(2):321–328. https://doi.org/10.1002/ccd.23483

    Article  PubMed  Google Scholar 

  23. Shaw JA, Gravereaux EC, Eisenhauer AC (2003) Carotid stenting in the bovine arch. Catheter Cardiovasc Interv 60(4):566–569. https://doi.org/10.1002/ccd.10690

    Article  PubMed  Google Scholar 

  24. Faggioli GL, Ferri M, Freyrie A et al. (2007) Aortic Arch Anomalies are Associated with Increased Risk of Neurological Events in Carotid Stent Procedures. Eur J Vasc Endovasc Surg. 33(4):436–441. https://doi.org/10.1016/j.ejvs.2006.11.026

  25. Snelling BM, Sur S, Shah SS, Chen S, Menaker SA, McCarthy DJ, Yavagal DR, Peterson EC, Starke RM (2018) Unfavorable vascular anatomy is associated with increased revascularization time and worse outcome in anterior circulation thrombectomy. World Neurosurg 120:e976–e983. https://doi.org/10.1016/j.wneu.2018.08.207

  26. Ay H, Furie KL, Singhal A, Smith WS, Sorensen AG, Koroshetz WJ (2005) An evidence-based causative classification system for acute ischemic stroke. Ann Neurol 58(5):688–697. https://doi.org/10.1002/ana.20617

    Article  PubMed  Google Scholar 

  27. Hart RG, Diener HC, Coutts SB, Easton JD, Granger CB, O’Donnell MJ, Sacco RL, Connolly SJ (2014) Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol 13(4):429–438. https://doi.org/10.1016/S1474-4422(13)70310-7

    Article  PubMed  Google Scholar 

  28. Ryoo S, Chung JW, Lee MJ, Kim SJ, Lee JS, Kim GM, Chung CS, Lee KH, Hong JM, Bang OY (2015) An approach to working up cases of embolic stroke of undetermined source. J Am Heart Assoc 5:e002975. https://doi.org/10.1161/JAHA.115.002975

    Article  Google Scholar 

  29. Tomita H, Sasaki S, Hagii J, Metoki N (2018) Covert atrial fibrillation and atrial high-rate episodes as a potential cause of embolic strokes of undetermined source: their detection and possible management strategy. J Cardiol 72(1):1–9. https://doi.org/10.1016/j.jjcc.2018.03.002

    Article  PubMed  Google Scholar 

  30. Boeckh-Behrens T, Kleine JF, Zimmer C et al (2016) Thrombus histology suggests cardioembolic cause in cryptogenic stroke. Stroke 47(7):1864–1871. https://doi.org/10.1161/STROKEAHA.116.013105

    Article  CAS  PubMed  Google Scholar 

  31. Sanna T, Diener H-C, Passman RS, di Lazzaro V, Bernstein RA, Morillo CA, Rymer MM, Thijs V, Rogers T, Beckers F, Lindborg K, Brachmann J (2014) Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med 370(26):2478–2486. https://doi.org/10.1056/NEJMoa1313600

    Article  CAS  PubMed  Google Scholar 

  32. Kim BJ, Kang HG, Kim H-J, Ahn SH, Kim NY, Warach S, Kang DW (2014) Magnetic resonance imaging in acute ischemic stroke treatment. J Stroke 16(3):131–145. https://doi.org/10.5853/jos.2014.16.3.131

  33. Rasch D, Guiard V (2004) The robustness of parametric statistical methods. Psychol Sci 46:175–208

    Google Scholar 

  34. Hayes AF (2013) Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. Methodology in the social sciences. Guilford Press, New York

    Google Scholar 

  35. Moorehead PA, Kim AH, Miller CP, Kashyap TV, Kendrick DE, Kashyap VS (2016) Prevalence of bovine aortic arch configuration in adult patients with and without thoracic aortic pathology. Ann Vasc Surg 30:132–137. https://doi.org/10.1016/j.avsg.2015.05.008

    Article  PubMed  Google Scholar 

  36. Reinshagen L, Vodiskar J, Mühler E, Hövels-Gürich HH, Vazquez-Jimenez JF (2014) Bicarotid trunk: how much is “not uncommon”? Ann Thorac Surg 97(3):945–949. https://doi.org/10.1016/j.athoracsur.2013.12.014

    Article  PubMed  Google Scholar 

  37. Natsis KI, Tsitouridis IA, Didagelos MV, Fillipidis AA, Vlasis KG, Tsikaras PD (2009) Anatomical variations in the branches of the human aortic arch in 633 angiographies: clinical significance and literature review. Surg Radiol Anat 31:319–323. https://doi.org/10.1007/s00276-008-0442-2

    Article  PubMed  Google Scholar 

  38. Feiz M, Nikoubashman O, Müller M (2017) Frequency of aortic arch variants in patients with large vessel stroke in the anterior circulation. Austin J Cerebrovasc Dis & Stroke 4(4):1051.

  39. Pham T, Martin C, Elefteriades J, Sun W (2013) Biomechanical characterization of ascending aortic aneurysm with concomitant bicuspid aortic valve and bovine aortic arch. Acta Biomater 9(8):7927–7936. https://doi.org/10.1016/j.actbio.2013.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clerici G, Giulietti E, Babucci G, Chaoui R (2018) Bovine aortic arch: clinical significance and hemodynamic evaluation. J Matern Fetal Neonatal Med 31(18):2381–2387. https://doi.org/10.1080/14767058.2017.1342807

    Article  PubMed  Google Scholar 

  41. Shalhub S, Schäfer M, Hatsukami TS, Sweet MP, Reynolds JJ, Bolster FA, Shin SH, Reece TB, Singh N, Starnes BW, Jazaeri O (2018) Association of variant arch anatomy with type B aortic dissection and hemodynamic mechanisms. J Vasc Surg 68(6):1640–1648. https://doi.org/10.1016/j.jvs.2018.03.409

    Article  PubMed  Google Scholar 

  42. Casa LDC, Deaton DH, Ku DN (2015) Role of high shear rate in thrombosis. J Vasc Surg 61(4):1068–1080. https://doi.org/10.1016/j.jvs.2014.12.050

    Article  PubMed  Google Scholar 

  43. Poullis MP, Warwick R, Oo A, Poole RJ (2008) Ascending aortic curvature as an independent risk factor for type A dissection, and ascending aortic aneurysm formation: a mathematical model. Eur J Cardiothorac Surg 33(6):995–1001. https://doi.org/10.1016/j.ejcts.2008.02.029

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Syperek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was waived by the local ethics committee due to the retrospective study design.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syperek, A., Angermaier, A., Kromrey, ML. et al. The so-called “bovine aortic arch”: a possible biomarker for embolic strokes?. Neuroradiology 61, 1165–1172 (2019). https://doi.org/10.1007/s00234-019-02264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-019-02264-3

Keywords

Navigation