Differentiation of lymphomatous, metastatic, and non-malignant lymphadenopathy in the neck with quantitative diffusion-weighted imaging: systematic review and meta-analysis



To perform a systematic review and meta-analysis of literature comparing average apparent diffusion coefficient (ADC) for differentiating lymphomatous, metastatic, and non-malignant cervical lymphadenopathy.


We performed a comprehensive literature search of Ovid MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and Web of Science Core Collection. Studies comparing average ADC of lymphomatous, metastatic, and non-malignant neck lymph nodes were included. The standardized mean difference and 95% confidence interval (CI) was calculated using random-effects models. In subgroup analysis of those studies applying ADC threshold for differentiation of cervical lymphadenopathy, pooled diagnostic odds ratio (DOR) and summary receiver operating characteristics (sROC) area under the curve (AUC) were determined.


A total of 27 studies with 1165 patients were included, pooling data from 225 lymphomatous, 1162 metastatic, and 1333 non-malignant cervical lymph nodes. The average ADC values were lower in lymphomatous compared to metastatic nodes, and in metastatic compared to non-malignant nodes with a standardized mean difference of − 1.36 (95% CI: − 1.71 to − 1.01, p < 0.0001) and − 1.61 (95% CI: − 2.19 to − 1.04, p < 0.0001), respectively. In subgroup analysis, applying ADC threshold could differentiate lymphomatous from metastatic lymphadenopathy with DOR of 52.07 (95% CI 25.45–106.54) and sROC AUC of 0.936 (95% CI 0.896–0.979) and differentiate metastatic from non-malignant nodes with DOR of 39.45 (95% CI 16.92–92.18) and sROC AUC of 0.929 (95% CI 0.873–0.966).


Quantitative assessment of ADC can help with differentiation of suspicious cervical lymph nodes, particularly in those patients without prior history of malignancy or unknown primary cancer site.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Lydiatt W, O'Sullivan B, Patel S (2018) Major changes in head and neck staging for 2018. In: Am Soc Clin Oncol Educ Book, pp 505–514

    Google Scholar 

  2. 2.

    Glastonbury CM, Mukherji SK, O'Sullivan B, Lydiatt WM (2017) Setting the stage for 2018: how the changes in the American joint committee on cancer/Union for International Cancer Control cancer staging manual eighth edition impact radiologists. AJNR Am J Neuroradiol 38:2231–2237

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Curtin HD, Ishwaran H, Mancuso AA, Dalley RW, Caudry DJ, McNeil BJ (1998) Comparison of CT and MR imaging in staging of neck metastases. Radiology 207:123–130

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Martin JM, Galloway TJ (2015) Evaluation and management of head and neck squamous cell carcinoma of unknown primary. Surg Oncol Clin N Am 24:579–591

    Article  PubMed  Google Scholar 

  5. 5.

    Mackenzie K, Watson M, Jankowska P, Bhide S, Simo R (2016) Investigation and management of the unknown primary with metastatic neck disease: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol 130:S170–S175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Frederiksen JK, Sharma M, Casulo C, Burack WR (2015) Systematic review of the effectiveness of fine-needle aspiration and/or core needle biopsy for subclassifying lymphoma. Arch Pathol Lab Med 139:245–251

    Article  PubMed  Google Scholar 

  7. 7.

    Payabvash S (2018) Quantitative diffusion magnetic resonance imaging in head and neck tumors. Quant Imaging Med Surg 8:1052–1065

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Payabvash S, Meric K, Cayci Z (2016) Differentiation of benign from malignant cervical lymph nodes in patients with head and neck cancer using PET/CT imaging. Clin Imaging 40:101–105

    Article  PubMed  Google Scholar 

  9. 9.

    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151:W65–W94

    Article  PubMed  Google Scholar 

  10. 10.

    Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM, Group Q (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536

    Article  PubMed  Google Scholar 

  11. 11.

    Cleophas TJ, Zwinderman AH (2009) Meta-analyses of diagnostic studies. Clin Chem Lab Med 47:1351–1354

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Takwoingi Y, Guo B, Riley RD, Deeks JJ (2017) Performance of methods for meta-analysis of diagnostic test accuracy with few studies or sparse data. Stat Methods Med Res 26:1896–1911

    Article  PubMed  Google Scholar 

  13. 13.

    Abdel Razek AA, Soliman NY, Elkhamary S, Alsharaway MK, Tawfik A (2006) Role of diffusion-weighted MR imaging in cervical lymphadenopathy. Eur Radiol 16:1468–1477

    Article  PubMed  Google Scholar 

  14. 14.

    Abdel Razek AAK, Kamal E (2013) Nasopharyngeal carcinoma: correlation of apparent diffusion coefficient value with prognostic parameters. Radiol Med 118:534–539

    Article  PubMed  Google Scholar 

  15. 15.

    Barchetti F, Pranno N, Giraldi G, Sartori A, Gigli S, Barchetti G, Lo Mele L, Marsella LT (2014) The role of 3 tesla diffusion-weighted imaging in the differential diagnosis of benign versus malignant cervical lymph nodes in patients with head and neck squamous cell carcinoma. Biomed Res Int 2014:532095

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Cintra MB, Ricz H, Mafee MF, Dos Santos AC (2018) Magnetic resonance imaging: dynamic contrast enhancement and diffusion-weighted imaging to identify malignant cervical lymph nodes. Radiol Bras 51:71–75

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    de Bondt RB, Hoeberigs MC, Nelemans PJ, Deserno WM, Peutz-Kootstra C, Kremer B, Beets-Tan RG (2009) Diagnostic accuracy and additional value of diffusion-weighted imaging for discrimination of malignant cervical lymph nodes in head and neck squamous cell carcinoma. Neuroradiology 51:183–192

    Article  PubMed  Google Scholar 

  18. 18.

    Goel V, Parihar PS, Parihar A, Goel AK, Waghwani K, Gupta R, Bhutekar U (2016) Accuracy of MRI in prediction of tumour thickness and nodal stage in oral tongue and gingivobuccal cancer with clinical correlation and staging. J Clin Diagn Res 10:TC01–TTC5

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Holzapfel K, Duetsch S, Fauser C, Eiber M, Rummeny EJ, Gaa J (2009) Value of diffusion-weighted MR imaging in the differentiation between benign and malignant cervical lymph nodes. Eur J Radiol 72:381–387

    Article  PubMed  Google Scholar 

  20. 20.

    Jin GQ, Yang J, Liu LD, Su DK, Wang DP, Zhao SF, Liao ZL (2016) The diagnostic value of 1.5-T diffusion-weighted MR imaging in detecting 5 to 10 mm metastatic cervical lymph nodes of nasopharyngeal carcinoma. Medicine 95:e4286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    King AD, Ahuja AT, Yeung DK, Fong DK, Lee YY, Lei KI, Tse GM (2007) Malignant cervical lymphadenopathy: diagnostic accuracy of diffusion-weighted MR imaging. Radiology 245:806–813

    Article  PubMed  Google Scholar 

  22. 22.

    Lee M-C, Tsai H-Y, Chuang K-S, Liu C-K, Chen M-K (2013) Prediction of nodal metastasis in head and neck cancer using a 3T MRI ADC map. AJNR Am J Neuroradiol 34:864–869

    Article  PubMed  Google Scholar 

  23. 23.

    Li H, Liu XW, Geng ZJ, Wang DL, Xie CM (2015) Diffusion-weighted imaging to differentiate metastatic from non-metastatic retropharyngeal lymph nodes in nasopharyngeal carcinoma. Dentomaxillofac Radiol 44:20140126–20140126

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Liang L, Luo X, Lian Z, Chen W, Zhang B, Dong Y, Liang C, Zhang S (2017) Lymph node metastasis in head and neck squamous carcinoma: efficacy of intravoxel incoherent motion magnetic resonance imaging for the differential diagnosis. Eur J Radiol 90:159–165

    Article  PubMed  Google Scholar 

  25. 25.

    Lim HK, Lee JH, Baek HJ, Kim N, Lee H, Park JW, Kim SY, Cho KJ, Baek JH (2014) Is diffusion-weighted MRI useful for differentiation of small non-necrotic cervical lymph nodes in patients with head and neck malignancies? Korean J Radiol 15:810–816

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Salem F, Elshafey R, Elmahalawy M, Elshaeny S (2014) Apparent diffusion coefficient measurements in the differentiation between benign and malignant neck masses. Egypt J Radiol Nucl Med 45:367–375

    Article  Google Scholar 

  27. 27.

    Si J, Huang S, Shi H, Liu Z, Hu Q, Wang G, Shen G, Zhang D (2014) Usefulness of 3T diffusion-weighted MRI for discrimination of reactive and metastatic cervical lymph nodes in patients with oral squamous cell carcinoma: a pilot study. Dentomaxillofac Radiol 43:20130202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Sumi M, Sakihama N, Sumi T, Morikawa M, Uetani M, Kabasawa H, Shigeno K, Hayashi K, Takahashi H, Nakamura T (2003) Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer. AJNR Am J Neuroradiol 24:1627–1634

    PubMed  Google Scholar 

  29. 29.

    Sumi M, Nakamura T (2009) Diagnostic importance of focal defects in the apparent diffusion coefficient-based differentiation between lymphoma and squamous cell carcinoma nodes in the neck. Eur Radiol 19:975–981

    Article  PubMed  Google Scholar 

  30. 30.

    Taha Ali TF (2012) Neck lymph nodes: characterization with diffusion-weighted MRI. Egypt J Radiol Nucl Med 43:173–181

    Article  Google Scholar 

  31. 31.

    Taha Ali TF, El Hariri MA (2017) Combined diffusion-weighted MRI and MR spectroscopy: feasibility to improve the MRI capability in differentiation between benign and malignant neck lymphadenopathy. Egypt J Radiol Nucl Med 48:97–106

    Article  Google Scholar 

  32. 32.

    Vandecaveye V, De Keyzer F, Vander Poorten V, Dirix P, Verbeken E, Nuyts S, Hermans R (2009) Head and neck squamous cell carcinoma: value of diffusion-weighted MR imaging for nodal staging. Radiology 251:134–146

    Article  PubMed  Google Scholar 

  33. 33.

    Vidiri A, Minosse S, Piludu F, Pellini R, Cristalli G, Kayal R, Carlino G, Renzi D, Covello R, Marzi S (2019) Cervical lymphadenopathy: can the histogram analysis of apparent diffusion coefficient help to differentiate between lymphoma and squamous cell carcinoma in patients with unknown clinical primary tumor. Radiol Med 124:19–26

    Article  PubMed  Google Scholar 

  34. 34.

    Wang YJ, Xu XQ, Hu H, Su GY, Shen J, Shi HB, Wu FY (2018) Histogram analysis of apparent diffusion coefficient maps for the differentiation between lymphoma and metastatic lymph nodes of squamous cell carcinoma in head and neck region. Acta Radiol 59:672–680

    Article  PubMed  Google Scholar 

  35. 35.

    Wendl CM, Muller S, Eiglsperger J, Fellner C, Jung EM, Meier JK (2016) Diffusion-weighted imaging in oral squamous cell carcinoma using 3 Tesla MRI: is there a chance for preoperative discrimination between benign and malignant lymph nodes in daily clinical routine. Acta Radiol 57:939–946

    Article  PubMed  Google Scholar 

  36. 36.

    Yamada I, Yoshino N, Hikishima K, Sakamoto J, Yokokawa M, Oikawa Y, Harada H, Kurabayashi T, Saida Y, Tateishi U, Yukimori A, Izumo T, Asahina S (2018) Oral carcinoma: clinical evaluation using diffusion kurtosis imaging and its correlation with histopathologic findings. Magn Reson Imaging 51:69–78

    Article  PubMed  Google Scholar 

  37. 37.

    Zhang Y, Chen J, Shen J, Zhong J, Ye R, Liang B (2013) Apparent diffusion coefficient values of necrotic and solid portion of lymph nodes: differential diagnostic value in cervical lymphadenopathy. Clin Radiol 68:224–231

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Zhang S-C, Zhou S-H, Shang D-S, Bao Y-Y, Ruan L-X, Wu T-T (2018) The diagnostic role of diffusion-weighted magnetic resonance imaging in hypopharyngeal carcinoma. Oncol Lett 15:5533–5544

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Zhong J, Lu Z, Xu L, Dong L, Qiao H, Hua R, Gong Y, Liu Z, Hao C, Liu X, Zong C, He L, Liu J (2014) The diagnostic value of cervical lymph node metastasis in head and neck squamous carcinoma by using diffusion-weighted magnetic resonance imaging and computed tomography perfusion. Biomed Res Int 2014:260859

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Abdel Razek AA, Gaballa G, Elhawarey G, Megahed AS, Hafez M, Nada N (2009) Characterization of pediatric head and neck masses with diffusion-weighted MR imaging. Eur Radiol 19:201–208

    Article  PubMed  Google Scholar 

  41. 41.

    Dawood HA, Hassan TA, Mohey N (2014) Value of combined real time sonoelastography and apparent diffusion coefficient value measurement in differentiation of enlarged neck lymph nodes. Egypt J Radiol Nucl Med 45:387–394

    Article  Google Scholar 

  42. 42.

    Eiber M, Dutsch S, Gaa J, Fauser C, Rummeny EJ, Holzapfel K (2008) Diffusion-weighted magnetic resonance imaging (DWI-MRI): a new method to differentiate between malignant and benign cervical lymph nodes. Laryngorhinootologie 87:850–855

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Sumi M, Van Cauteren M, Nakamura T (2006) MR microimaging of benign and malignant nodes in the neck. AJR Am J Roentgenol 186:749–757

    Article  PubMed  Google Scholar 

  44. 44.

    Kato H, Kanematsu M, Kato Z, Teramoto T, Mizuta K, Aoki M, Makita H, Kato K (2013) Necrotic cervical nodes: usefulness of diffusion-weighted MR imaging in the differentiation of suppurative lymphadenitis from malignancy. Eur J Radiol 82:e28–e35

    Article  PubMed  Google Scholar 

  45. 45.

    Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635

    Article  PubMed  Google Scholar 

  46. 46.

    Driessen JP, van Kempen PM, van der Heijden GJ, Philippens ME, Pameijer FA, Stegeman I, Terhaard CH, Janssen LM, Grolman W (2015) Diffusion-weighted imaging in head and neck squamous cell carcinomas: a systematic review. Head Neck 37:440–448

    Article  PubMed  Google Scholar 

  47. 47.

    Wu LM, Xu JR, Hua J, Gu HY, Zhu J, Hu J (2013) Value of diffusion-weighted MR imaging performed with quantitative apparent diffusion coefficient values for cervical lymphadenopathy. J Magn Reson Imaging 38:663–670

    Article  PubMed  Google Scholar 

  48. 48.

    Zhou M, Lu B, Lv G, Tang Q, Zhu J, Li J, Shi K (2015) Differential diagnosis between metastatic and non-metastatic lymph nodes using DW-MRI: a meta-analysis of diagnostic accuracy studies. J Cancer Res Clin Oncol 141:1119–1130

    Article  PubMed  Google Scholar 

  49. 49.

    Long M, Wang L, Mou L, Zhang K, Liu L, Li Y, Liu X, Yu W, Gao G, Chen X, Shen W, Shrestha A (2018) Z-score transformation of ADC values: a way to universal cut off between malignant and benign lymph nodes. Eur J Radiol 106:122–127

    Article  PubMed  Google Scholar 

  50. 50.

    Suh CH, Choi YJ, Baek JH, Lee JH (2018) The diagnostic value of diffusion-weighted imaging in differentiating metastatic lymph nodes of head and neck squamous cell carcinoma: a systematic review and meta-analysis. AJNR Am J Neuroradiol 39:1889–1895

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Stecco A, Buemi F, Cassara A, Matheoud R, Sacchetti GM, Arnulfo A, Brambilla M, Carriero A (2016) Comparison of retrospective PET and MRI-DWI (PET/MRI-DWI) image fusion with PET/CT and MRI-DWI in detection of cervical and endometrial cancer lymph node metastases. Radiol Med 121:537–545

    Article  PubMed  Google Scholar 

  52. 52.

    Kolff-Gart AS, Pouwels PJ, Noij DP, Ljumanovic R, Vandecaveye V, de Keyzer F, de Bree R, de Graaf P, Knol DL, Castelijns JA (2015) Diffusion-weighted imaging of the head and neck in healthy subjects: reproducibility of ADC values in different MRI systems and repeat sessions. AJNR Am J Neuroradiol 36:384–390

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Paudyal R, Konar AS, Obuchowski NA, Hatzoglou V, Chenevert TL, Malyarenko DI, Swanson SD, LoCastro E, Jambawalikar S, Liu MZ, Schwartz LH, Tuttle RM, Lee N, Shukla-Dave A (2019) Repeatability of quantitative diffusion-weighted imaging metrics in phantoms, head-and-neck and thyroid cancers: preliminary findings. Tomography 5:15–25

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Shukla-Dave A, Obuchowski NA, Chenevert TL, Jambawalikar S, Schwartz LH, Malyarenko D, Huang W, Noworolski SM, Young RJ, Shiroishi MS, Kim H, Coolens C, Laue H, Chung C, Rosen M, Boss M, Jackson EF (2018) Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging

Download references


No funding was received for this study. RF is a clinical research scholar supported by the FRQS (Fonds de recherche en santé du Québec).

Author information



Corresponding author

Correspondence to Seyedmehdi Payabvash.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with regard to present study. RF has, however, acted as consultant and speaker for GE Healthcare and is a founding partner and stockholder of 4Intel Inc.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was not required for the study, given the retrospective review of literature.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(PDF 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Payabvash, S., Brackett, A., Forghani, R. et al. Differentiation of lymphomatous, metastatic, and non-malignant lymphadenopathy in the neck with quantitative diffusion-weighted imaging: systematic review and meta-analysis. Neuroradiology 61, 897–910 (2019). https://doi.org/10.1007/s00234-019-02236-7

Download citation


  • Apparent diffusion coefficient
  • Metastasis
  • Lymphoma
  • Cervical lymphadenopathy