Skip to main content

Advertisement

Log in

Are gait changes linked to CSF flow changes in the sagittal sinus?

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To identify if specific findings on magnetic resonance imaging (MRI) cerebrospinal fluid (CSF) flow studies can be utilised to identify which patients with idiopathic normal pressure hydrocephalus (iNPH) will have improved gait following a CSF tap test (TT).

Methods

Prospective study of patients undergoing a CSF TT for iNPH. Functional gait was assessed using the timed up and go (TUG) test before and after the CSF TT. MRI CSF flow studies accompanied the CSF TT. The minimum clinically important difference for the TUG (3.63 s) was used as a cutoff value to categorise patients as responders to the CSF TT.

Results

Fifty-three patients underwent CSF TT and MRI CSF flow studies. Significant differences were identified between groups for (non-responder vs responder) superior sagittal sinus flow (47.10% vs 40.41%), sagittal sinus stroke volume (274 vs 176.5 μl), sagittal sinus to arterial stroke volume ratio (0.203 vs 0.164), sagittal sinus area (42.2 mm2 vs 36.2 mm2) and circumference (27.7 mm vs 24.95 mm). No differences were present for aqueduct stroke volume, arterial stroke volume or aqueduct net flow.

Conclusion

A link between gait improvement resulting from CSF drainage and sagittal sinus measurements indicates that the sagittal sinus may play a role in the manifestation of symptoms in iNPH. This may have implications for the diagnosis of iNPH and potentially inform clinical decision making regarding surgical intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hakim S, Adams R (1965) The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 2(4):307–327

    Article  CAS  PubMed  Google Scholar 

  2. Klinge P, Marmarou A, Bergsneider M, Relkin N, Black PM (2005) Outcome of shunting in idiopathic normal-pressure hydrocephalus and the value of outcome assessment in shunted patients. Neurosurgery 57(3):S2–40–S42–52

    Article  Google Scholar 

  3. Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM (2005) Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 57(3):S2–4-S2-16

    Google Scholar 

  4. Khan F, Rehman A, Shamim MS, Bari ME (2015) Factors affecting ventriculoperitoneal shunt survival in adult patients. Surg Neurol Int 6:25. https://doi.org/10.4103/2152-7806.151388

    Article  PubMed  PubMed Central  Google Scholar 

  5. Verres M, Selman W (2004) Management of normal pressure hydrocephalus. Am Fam Physician 70(6):1071–1078

    Google Scholar 

  6. Bergsneider M, Black PM, Klinge P, Marmarou A, Relkin N (2005) Surgical management of idiopathic normal-pressure hydrocephalus. Neurosurgery 57(3):S2–29–S22–39

    Article  Google Scholar 

  7. Ravdin LD, Katzen HL, Jackson AE, Tsakanikas D, Assuras S, Relkin NR (2008) Features of gait most responsive to tap test in normal pressure hydrocephalus. Clin Neurol Neurosurg 110(5):455–461

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mirzayan M, Luetjens G, Borremans J, Regel J (2010) Extended long term (>5 years) outcome of cerebrospinal fluid shunting in idiopathic normal pressure hydrocephalus. Neurosurgery 67(2):295–301

    Article  PubMed  Google Scholar 

  9. Bateman G (2004) The role of altered impedance in the pathophysiology of normal pressure hydrocephalus, Alzheimer’s disease and syringomyelia. Med Hypotheses 63:980–985

    Article  PubMed  Google Scholar 

  10. Marmarou A, Bergsneider M, Klinge P, Relkin N, Black PM (2005) The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus. In: Neurosurgery 57 (3):S2–17-S12–28, vol 57, pp S2-17–S2-28

    Google Scholar 

  11. Daroff R, Fenichel G, Jankovic J, Mazziotta J (2012) Brain edema and disorders of cerebrospinal fluid circulation. In: Rosenberg G (ed) Bradley’s neurology in clinical practice, vol 6. Elsevier, Philadelphia, pp 1393–1395

    Google Scholar 

  12. Czosnyka Z, Owler B, Keong N (2011) Impact of duration of symptoms on CSF dynamics in idiopathic normal pressure hydrocephalus. Acta Neurol Scand 123:414–418

    Article  CAS  PubMed  Google Scholar 

  13. Portnoy HD, Branch C, Castro ME (1994) The relationship of intracranial venous pressure to hydrocephalus. Childs Nerv Syst 10(1):29–35. https://doi.org/10.1007/bf00313582

    Article  CAS  PubMed  Google Scholar 

  14. Graff-Radford NR, Godersky JC (1987) Idiopathic normal pressure hydrocephalus and systemic hypertension. Neurology 37:868–871

    Article  CAS  PubMed  Google Scholar 

  15. Israelsson H, Carlberg B, Wikkelsö C, Laurell K, Kahlon B, Leijon G, Eklund A, Malm J (2017) Vascular risk factors in INPH. A prospective case-control study (the INPH-CRasH study). Neurology 88(6):577–585. https://doi.org/10.1212/wnl.0000000000003583

    Article  PubMed  PubMed Central  Google Scholar 

  16. Krauss JK, Regel JP, Vach W, Droste DW, Borremans JJ, Mergner T (1996) Vascular risk factors and arteriosclerotic disease in idiopathic normal-pressure hydrocephalus of the elderly. Stroke 27:24–29

    Article  CAS  PubMed  Google Scholar 

  17. Silverberg G, Mayo M, Saul T, Rubenstien E, McGuire D (2003) Alzheimer's disease, normal pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2:506–511

    Article  PubMed  Google Scholar 

  18. Bateman G (2010) Hyperemic hydrocephalus: a new form of childhood hydrocephalus analogous to hyperemic intracranial hypertension in adults. J Neurosurg: Paediatrics 5(1):20–26

    Google Scholar 

  19. Bateman G, Napier B (2011) External hydrocephalus in infants: six cases with MR venogram and flow quantification correlation. Childs Nerv Syst 27(12):2087–2096. https://doi.org/10.1007/s00381-011-1549-z

    Article  PubMed  Google Scholar 

  20. Shulmann K, Ransohoff J (1965) Sagittal sinus venous pressure in hydrocephalus. J Neurosurg 23(2):169–173

    Article  Google Scholar 

  21. Bateman GA (2002) Vascular hydraulics associated with idiopathic and secondary intracranial hypertension. Am J Neuroradiol 23(7):1180–1186

    PubMed  Google Scholar 

  22. Bateman G (2002) Pulse-wave encephalopathy: a comparative study of the hydrodynamics of leukoaraiosis and normal-pressure hydrocephalus. Neuroradiology 44(9):740–747

    Article  CAS  PubMed  Google Scholar 

  23. Al-Zain FT, Rademacher G, Lemcke J, Mutze J, Meier U (2007) Idiopathic normal-pressure hydrocephalus. Flow measurement of cerebrospinal fluid using phase contrast MRI and its diagnostics importance. Nervenarzt 78(2):181–187. https://doi.org/10.1007/s00115-006-2231-7

    Article  CAS  PubMed  Google Scholar 

  24. Bradley WG Jr, Scalzo D, Queralt J, Nitz WN, Atkinson DJ, Wong P (1996) Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 198(2):523–529. https://doi.org/10.1148/radiology.198.2.8596861

    Article  PubMed  Google Scholar 

  25. Halperin J, Kurlan R, Schwalb J, Cusimano M, Gronseth G, Gloss D (2015) Practice guideline: idiopathic normal pressure hydrocephalus: response to shunting and predictors of response. Neurology 85:2063–2071

    Article  PubMed  PubMed Central  Google Scholar 

  26. Golomb J, Wisoff J, Miller DC, Boksay I, Kluger A, Weiner H, Salton J, Graves W (2000) Alzheimer’s disease comorbidity in normal pressure hydrocephalus: prevalence and shunt response. J Neurol Neurosurg Psychiatry 68(6):778–781. https://doi.org/10.1136/jnnp.68.6.778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ogino A, Kazui H, Miyoshi N, Hashimoto M, Ohkawa S (2006) Cognitive impairment in patients with idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Disord 21:113–119

    Article  PubMed  Google Scholar 

  28. Feick D, Sickmond J, Liu L, Metellus P (2008) Sensitivity and predictive value of occupational and physical therapy assessments in the functional evaluation of patients with suspected normal pressure hydrocephalus. J Rehabil Med 40:715–720

    Article  PubMed  Google Scholar 

  29. Virhammar J, Cesarini KG, Laurell K (2012) The CSF tap test in normal pressure hydrocephalus: evaluation time, reliability and the influence of pain. Eur J Neurol 19(2):271–276

    Article  CAS  PubMed  Google Scholar 

  30. Mori E, Ishikawa M, Kato T, Kazui H, Miyake H, Miyajima M (2012) Guidelines for management of idiopathic normal pressure hydrocephalus: second edition. Neurol Med Chir (Tokyo) 52:775–809

    Article  Google Scholar 

  31. Gallagher R, Marquez J, Osmotherly P (2018) Gait and balance measures can identify change from a cerebrospinal fluid tap test in idiopathic normal pressure hydrocephalus. Arch Phys Med Rehabil 99(11):2244–2250. https://doi.org/10.1016/j.apmr.2018.03.018

    Article  PubMed  Google Scholar 

  32. Gallagher R, Marquez J, Osmotherly P (2018) Clinimetric properties and minimally clinically important differences for a battery of mobility, balance and cognitive tests for normal pressure hydrocephalus. Neurosurgery Published ahead of print. https://doi.org/10.1093/neuros/nyy286

  33. Ringstad G, Emblem KE, Geier O, Alperin N, Eide PK (2015) Aqueductal stroke volume: comparisons with intracranial pressure scores in idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol 36(9):1623–1630. https://doi.org/10.3174/ajnr.A4340

  34. El Sankari S, Fichten A, Gondry-Jouet C, Czosnyka M, Legars D, Deramond H, Baledent O (2012) Correlation between tap test and CSF aqueductal stroke volume in idiopathic normal pressure hydrocephalus. Acta Neurochir Suppl 113:43–46

Download references

Acknowledgements

John Hunter Hospital Physiotherapy, Neurosurgery, Neurology and Radiology Departments.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gallagher.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The Hunter New England Human Research Ethics Committee approved this study. All participants gave written informed consent prior to data collection beginning. Reference: 13/06/19/4.02.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallagher, R., Bateman, G., Marquez, J. et al. Are gait changes linked to CSF flow changes in the sagittal sinus?. Neuroradiology 61, 659–666 (2019). https://doi.org/10.1007/s00234-019-02192-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-019-02192-2

Keywords

Navigation