Skip to main content

Micro-CT myelography using contrast-enhanced digital subtraction: feasibility and initial results in healthy rats



The spinal subarachnoid space (SSAS) is vital for neural performance. Although models of spinal diseases and trauma are used frequently, no methods exist to obtain high-resolution myelograms in rodents. Thereby, our aim was to explore the feasibility of obtaining high-resolution micro-CT myelograms of rats by contrast-enhanced dual-energy (DE) and single-energy (SE) digital subtraction.


Micro-CT contrast-enhanced DE and SE imaging protocols were implemented with live adult rats (total of 18 animals). For each protocol, contrast agents based on iodine (Iomeron® 400 and Fenestra® VC) and gold nanoparticles (AuroVist™ 15 nm) were tested. For DE, images at low- and high-energy settings were acquired after contrast injection; for SE, one image was acquired before and the other after contrast injection. Post-processing consisted of region of interest selection, image registration, weighted subtraction, and longitudinal alignment.


High-resolution myelograms were obtained with contrast-enhanced digital subtraction protocols. After qualitative and quantitative (contrast-to-noise ratio) analyses, we found that the SE acquisition protocol with Iomeron® 400 provides the best images. 3D contour renderings allowed visualization of SSAS and identification of some anatomical structures within it.


This in vivo study shows the potential of SE contrast-enhanced myelography for imaging SSAS in rat. This approach yields high-resolution 3D images without interference from adjacent anatomical structures, providing an innovative tool for further assessment of studies involving rat SSAS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Yoshizawa H (2002) Presidential address: pathomechanism of myelopathy and radiculopathy from the viewpoint of blood flow and cerebrospinal fluid flow including a short historical review. Spine (Phila Pa 1976) 27:1255–1263

    Article  Google Scholar 

  2. 2.

    Brodbelt A, Stoodley M (2007) CSF pathways: a review. Br J Neurosurg 21:510–520.

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Zappaterra MW, Lehtinen MK (2012) The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci 69:2863–2878.

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Grossman SA, Krabak MJ (1999) Leptomeningeal carcinomatosis. Cancer Treat Rev 25:103–119.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Brodbelt AR, Stoodley MA, Watling AM, Tu J, Burke S, Jones NR (2003) Altered subarachnoid space compliance and fluid flow in an animal model of posttraumatic syringomyelia. Spine (Phila Pa 1976) 28:E413–E4199.

    Article  Google Scholar 

  6. 6.

    Maxmauer U, Danz B, Gottschalk A, Kunz U (2011) Endoscope-assisted surgery of spinal intradural adhesions in the presence of cerebrospinal fluid flow obstruction. Spine (Phila Pa 1976) 36:E773–E779.

    Article  Google Scholar 

  7. 7.

    Reyes-Alva HJ, Franco-Bourland RE, Martinez-Cruz A, Grijalva I, Madrazo I, Guizar-Sahagun G (2013) Spatial and temporal morphological changes in the subarachnoid space after graded spinal cord contusion in the rat. J Neurotrauma 30:1084–1091.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J (2005) The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 71:1–52.

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Mason WP, Yeh SD, DeAngelis LM (1998) 111Indium-diethylenetriamine pentaacetic acid cerebrospinal fluid flow studies predict distribution of intrathecally administered chemotherapy and outcome in patients with leptomeningeal metastases. Neurology 50:438–444.

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Kjell J, Olson L (2016) Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 9:1125–1137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Iannotti C, Zhang YP, Shields LB, Han Y, Burke Da XXM, Shields CB (2006) Dural repair reduces connective tissue scar invasion and cystic cavity formation after acute spinal cord laceration injury in adult rats. J Neurotrauma 23:853–865.

    Article  PubMed  Google Scholar 

  12. 12.

    Franco-Bourland RE, Guízar-Sahagún G, Quintana-Armenta A, Reyes-Alva HJ, Martínez-Cruz A, Madrazo I (2013) Superparamagnetic beads for estimation of spinal subarachnoid space permeability in rats. J Neurosci Methods 219:271–275.

    Article  PubMed  Google Scholar 

  13. 13.

    Levy LM (1999) MR imaging of cerebrospinal fluid flow and spinal cord motion in neurologic disorders of the spine. Magn Reson Imaging Clin N Am 7:573–587

    PubMed  CAS  Google Scholar 

  14. 14.

    Mauer UM, Freude G, Danz B, Kunz U (2008) Cardiac-gated phase-contrast magnetic resonance imaging of cerebrospinal fluid flow in the diagnosis of idiopathic syringomyelia. Neurosurgery 63:1139–1944.

    Article  PubMed  Google Scholar 

  15. 15.

    Yiallourou TI, Kroger JR, Stergiopulos N, Maintz D, Martin BA, Bunck AC (2012) Comparison of 4D phase-contrast MRI flow measurements to computational fluid dynamics simulations of cerebrospinal fluid motion in the cervical spine. PLoS One 7:e52284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Kuhlman JE, Collins J, Brooks GN, Yandow DR, Broderick LS (2006) Dual-energy subtraction chest radiography: what to look for beyond calcified nodules. Radiographics 26:79–92.

    Article  PubMed  Google Scholar 

  17. 17.

    Li F, Engelmann R, Doi K, MacMahon H (2008) Improved detection of small lung cancers with dual-energy subtraction chest radiography. AJR Am J Roentgenol 190:886–891.

    Article  PubMed  Google Scholar 

  18. 18.

    Castillo JP, Corona-Nieblas L, Berumen F, Ayala-Domínguez L, Medina LA, Brandan ME (2016) Optimization of dual-energy subtraction for preclinical studies using a commercial MicroCT unit. AIP Conf Proc.

  19. 19.

    Lewin JM, Isaacs PK, Vance V, Larke FJ (2003) Dual-energy contrast-enhanced digital subtraction mammography: feasibility. Radiology 229:261–268.

    Article  PubMed  Google Scholar 

  20. 20.

    Cruz-Bastida JP, Rosado-Mendez I, Perez-Ponce H, Villaseñor Y, Galván HA, Trujillo FE, Benítez L, Brandan ME (2012) Contrast optimization in clinical contrast-enhanced digital mammography images. In: Maidment ADA, Bakic PR, Gavenonis S (eds) Breast imaging, vol 7361. Springer, Berlin, Heidelberg, pp 17–23

    Chapter  Google Scholar 

  21. 21.

    Berumen F, Ayala-Domínguez L, Medina LA, Brandan ME (2016) A method to optimize the image acquisition protocol of a MicroCT unit for preclinical studies using contrast-enhanced digital subtraction. AIP Conf Proc 1747:080003.

    Article  CAS  Google Scholar 

  22. 22.

    van Aarle W, Palenstijn WJ, De Beenhouwer J, Altantzis T, Bals S, Batenburg KJ, Sijbers J (2015) The ASTRA toolbox: a platform for advanced algorithm development in electron tomography. Ultramicroscopy 157:35–47.

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    van Aarle W, Palenstijn WJ, Cant J, Janssens E, Bleichrodt F, Dabravolski A, De Beenhouwer J, Batenburg KJ, Sijbers J (2016) Fast and flexible X-ray tomography using the ASTRA toolbox. Opt Express 24:25129–25147.

    Article  PubMed  Google Scholar 

  24. 24.

    Noo F, Clackdoyle R, Mennessier C, White T, Timothy JR (2000) Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography. Phys Med Biol 45:3489–3508.

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Ourselin S, Roche A, Subsol G, Pennec X, Ayache N (2001) Reconstructing a 3d structure from serial histological sections. Image Vis Comput 19:25–31.

    Article  Google Scholar 

  26. 26.

    Bushberg JT, Seibert JA, Boone JM, Leidholdt EM (2012) The essential physics of medical imaging, vol 40, 3rd edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia.

    Book  Google Scholar 

  27. 27.

    Ahrens J, Geveci B, Law C (2005) ParaView: an end-user tool for large data visualization. In: Hansen CD, Johnson CR (eds) The Visualization Handbook. Elsevier, Oxford, pp 717–731

  28. 28.

    Holdsworth DW, Thornton MM (2002) Micro-CT in small animal and specimen imaging. Trends Biotechnol 20:34–39.

    Article  Google Scholar 

  29. 29.

    Bentley MD, Ortiz MC, Ritman EL, Romero JC (2002) The use of microcomputed tomography to study microvasculature in small rodents. Am J Phys Regul Integr Comp Phys 282:1267–1279.

    Article  Google Scholar 

  30. 30.

    Ritman EL (2004) Micro-computed tomography: current status and developments. Annu Rev Biomed Eng 6:185–208.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253.

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Choukèr A, Lizak M, Schimel D, Helmberger T, Ward JM, Despres D, Kaufmann I, Bruns C, Löhe F, Ohta A, Sitkovsky MV, Klaunberg B, Thiel M (2008) Comparison of fenestra VC contrast-enhanced computed tomography imaging with gadopentetate dimeglumine and ferucarbotran magnetic resonance imaging for the in vivo evaluation of murine liver damage after ischemia and reperfusion. Investig Radiol 43:77–91.

    Article  Google Scholar 

  33. 33.

    Hubbell JH, Seltzer SM (2004) X-ray mass attenuation coefficients (NIST standard reference database 126). National Institute of Standards and Technology.

Download references

Author information



Corresponding authors

Correspondence to Gabriel Guízar-Sahagún or Luis A. Medina.

Ethics declarations


This study was funded by the Fund for Health Research (Grant FIS/IMSS/PROT/G15/1465) from the Instituto Mexicano del Seguro Social ( and institutional research resources from the National Cancer Institute, Mexico (

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Committee of Ethics in Research of the Instituto Mexicano del Seguro Social (File no. R-2014-785-099). All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zambrano-Rodríguez, P.C., Bolaños-Puchet, S., Reyes-Alva, H.J. et al. Micro-CT myelography using contrast-enhanced digital subtraction: feasibility and initial results in healthy rats. Neuroradiology 61, 323–330 (2019).

Download citation


  • Metal nanoparticles
  • Myelography
  • Subarachnoid space
  • Subtraction technique
  • Three-dimensional
  • X-ray microtomography