, Volume 61, Issue 5, pp 515–523 | Cite as

Atrophy of the ipsilateral mammillary body in unilateral hippocampal sclerosis shown by thin-slice-reconstructed volumetric analysis

  • Yohei Morishita
  • Shunji MugikuraEmail author
  • Naoko Mori
  • Hajime Tamura
  • Shiho Sato
  • Toshiaki Akashi
  • Kazutaka Jin
  • Nobukazu Nakasato
  • Kei Takase
Diagnostic Neuroradiology



Conventional volumetric analysis could not detect ipsilateral atrophy of the mammillary body in patients with unilateral hippocampal sclerosis. By using thin-slice-reconstructed volumetric analysis, we investigated whether the mammillary body volume is smaller on the hippocampal sclerosis side than in healthy subjects or the non-hippocampal sclerosis side.


This retrospective study included 45 patients with unilateral hippocampal sclerosis and 30 healthy subjects. Three-dimensional T1WI of 1 mm thicknesses were oversampled to a thickness of 0.2 mm (thin-slice-reconstructed images), and the mammillary bodies were segmented manually to determine mammillary body volume on each side. Mammillary body volumes on the hippocampal sclerosis side were compared with those in healthy subjects or the non-hippocampal sclerosis side.


In patients with right hippocampal sclerosis, right mammillary body volume was both significantly smaller than that in healthy subjects (30.3 ± 10.3 vs. 43.3 ± 8.07 mm3, P < 0.001) and significantly smaller than the left mammillary body volume in each patient (30.3 ± 10.3 vs. 41.4 ± 10.1 mm3, P < 0.001). Similarly, in patients with left hippocampal sclerosis, left mammillary body volume was both significantly smaller than that in healthy subjects (37.7 ± 11.2 vs. 47.0 ± 8.65 mm3, P < 0.001) and significantly smaller than right mammillary body volume in each patient (37.7 ± 11.2 vs. 42.5 ± 7.78 mm3, P = 0.044).


In this study, thin-slice-reconstructed volumetric analysis showed that, in patients with unilateral hippocampal sclerosis, mammillary body volume on the hippocampal sclerosis side is smaller than that in healthy subjects and the non-hippocampal sclerosis side.


Epilepsy Hippocampal sclerosis Mammillary body MRI Volumetry 





hippocampal sclerosis


hippocampal volume


intraclass correlation coefficient


mammillary body ratio


mammillary body volume


Compliance with ethical standards


No funding was received for this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of our institutional review board and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.

Informed consent

For this type of retrospective study formal consent is not required.

Supplementary material

234_2019_2158_MOESM1_ESM.docx (21 kb)
ESM 1 (DOCX 20.7 kb)


  1. 1.
    Blümcke I, Thom M, Wiestler OD (2002) Ammon’s horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol 12:199–211Google Scholar
  2. 2.
    Wolf HK, Campos MG, Zentner J et al (1993) Surgical pathology of temporal lobe epilepsy. Experience with 216 cases. J Neuropathol Exp Neurol 52:499–506CrossRefGoogle Scholar
  3. 3.
    Baulac M (2015) MTLE with hippocampal sclerosis in adult as a syndrome. Rev Neurol (Paris) 171:259–266CrossRefGoogle Scholar
  4. 4.
    Ozturk A, Yousem DM, Mahmood A, El Sayed S (2008) Prevalence of asymmetry of mamillary body and fornix size on MR imaging. AJNR Am J Neuroradiol 29:384–387CrossRefGoogle Scholar
  5. 5.
    Kim JH, Tien RD, Felsberg GJ, Osumi AK, Lee N (1995) Clinical significance of asymmetry of the fornix and mamillary body on MR in hippocampal sclerosis. AJNR Am J Neuroradiol 16:509–515Google Scholar
  6. 6.
    Chan S, Erickson JK, Yoon SS (1997) Limbic system abnormalities associated with mesial temporal sclerosis: a model of chronic cerebral changes due to seizures. Radiogr Rev Publ Radiol Soc N Am Inc 17:1095–1110Google Scholar
  7. 7.
    Kodama F, Ogawa T, Sugihara S, Kamba M, Kohaya N, Kondo S, Kinoshita T (2003) Transneuronal degeneration in patients with temporal lobe epilepsy: evaluation by MR imaging. Eur Radiol 13:2180–2185CrossRefGoogle Scholar
  8. 8.
    Papez J (1937) A proposed mechanism of emotion. Arch Neurol Psychiatr 38:725–743CrossRefGoogle Scholar
  9. 9.
    Kuzniecky R, Bilir E, Gilliam F, Faught E, Martin R, Hugg J (1999) Quantitative MRI in temporal lobe epilepsy: evidence for fornix atrophy. Neurology 53:496–501CrossRefGoogle Scholar
  10. 10.
    Urbach H, Siebenhaar G, Koenig R, von Oertzen J, Scorzin J, Kurthen M, Schild HH (2005) Limbic system abnormalities associated with Ammon’s horn sclerosis do not alter seizure outcome after amygdalohippocampectomy. Epilepsia 46:549–555CrossRefGoogle Scholar
  11. 11.
    Bilir E, Craven W, Hugg J, Gilliam F, Martin R, Faught E, Kuzniecky R (1998) Volumetric MRI of the limbic system: anatomic determinants. Neuroradiology 40:138–144CrossRefGoogle Scholar
  12. 12.
    Kumar R, Woo MA, Birrer BVX, Macey PM, Fonarow GC, Hamilton MA, Harper RM (2009) Mammillary bodies and fornix fibers are injured in heart failure. Neurobiol Dis 33:236–242CrossRefGoogle Scholar
  13. 13.
    Khalsa SS, Kumar R, Patel V, Strober M, Feusner JD (2016) Mammillary body volume abnormalities in anorexia nervosa. Int J Eat Disord 49:920–929CrossRefGoogle Scholar
  14. 14.
    Kumar R, Birrer BVX, Macey PM, Woo MA, Gupta RK, Yan-Go FL, Harper RM (2008) Reduced mammillary body volume in patients with obstructive sleep apnea. Neurosci Lett 438:330–334CrossRefGoogle Scholar
  15. 15.
    Urbach H (2005) Imaging of the epilepsies. Eur Radiol 15:494–500CrossRefGoogle Scholar
  16. 16.
    Van Paesschen W, Revesz T, Duncan JS et al (1997) Quantitative neuropathology and quantitative magnetic resonance imaging of the hippocampus in temporal lobe epilepsy. Ann Neurol 42:756–766CrossRefGoogle Scholar
  17. 17.
    Seidenberg M, Kelly KG, Parrish J, Geary E, Dow C, Rutecki P, Hermann B (2005) Ipsilateral and contralateral MRI volumetric abnormalities in chronic unilateral temporal lobe epilepsy and their clinical correlates. Epilepsia 46:420–430CrossRefGoogle Scholar
  18. 18.
    Bien CG, Urbach H, Schramm J, Soeder BM, Becker AJ, Voltz R, Vincent A, Elger CE (2007) Limbic encephalitis as a precipitating event in adult-onset temporal lobe epilepsy. Neurology 69:1236–1244CrossRefGoogle Scholar
  19. 19.
    Sato S, Iwasaki M, Suzuki H, Mugikura S, Jin K, Tominaga T, Takase K, Takahashi S, Nakasato N (2016) T2 relaxometry improves detection of non-sclerotic epileptogenic hippocampus. Epilepsy Res 126:1–9CrossRefGoogle Scholar
  20. 20.
    Callen DJ, Black SE, Gao F et al (2001) Beyond the hippocampus: MRI volumetry confirms widespread limbic atrophy in AD. Neurology 57:1669–1674CrossRefGoogle Scholar
  21. 21.
    Baroncini M, Jissendi P, Balland E, Besson P, Pruvo JP, Francke JP, Dewailly D, Blond S, Prevot V (2012) MRI atlas of the human hypothalamus. NeuroImage 59:168–180CrossRefGoogle Scholar
  22. 22.
    Mai J, Assheuer J, Paxinos G (1997) Atlas of the human brain. Academic Press, San Diego, pp 86–95Google Scholar
  23. 23.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefGoogle Scholar
  24. 24.
    Watson C, Andermann F, Gloor P, Jones-Gotman M, Peters T, Evans A, Olivier A, Melanson D, Leroux G (1992) Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging. Neurology 42:1743–1750CrossRefGoogle Scholar
  25. 25.
    Bernstein H-G, Klix M, Dobrowolny H, Brisch R, Steiner J, Bielau H, Gos T, Bogerts B (2012) A postmortem assessment of mammillary body volume, neuronal number and densities, and fornix volume in subjects with mood disorders. Eur Arch Psychiatry Clin Neurosci 262:637–646CrossRefGoogle Scholar
  26. 26.
    Tsivilis D, Vann SD, Denby C, Roberts N, Mayes AR, Montaldi D, Aggleton JP (2008) A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory. Nat Neurosci 11:834–842CrossRefGoogle Scholar
  27. 27.
    Jeyaraj MK, Menon RN, Justus S, Alexander A, Sarma PS, Radhakrishnan K (2013) A critical evaluation of the lateralizing significance of material-specific memory deficits in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Behav 28:460–466CrossRefGoogle Scholar
  28. 28.
    McMillan TM, Powell GE, Janota I, Polkey CE (1987) Relationships between neuropathology and cognitive functioning in temporal lobectomy patients. J Neurol Neurosurg Psychiatry 50:167–176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yohei Morishita
    • 1
  • Shunji Mugikura
    • 1
    Email author
  • Naoko Mori
    • 1
  • Hajime Tamura
    • 1
  • Shiho Sato
    • 1
  • Toshiaki Akashi
    • 1
  • Kazutaka Jin
    • 2
  • Nobukazu Nakasato
    • 2
  • Kei Takase
    • 1
  1. 1.Department of Diagnostic Radiology, Graduate School of MedicineTohoku UniversityAoba-kuJapan
  2. 2.Department of Epileptology, Graduate School of MedicineTohoku UniversityAoba-kuJapan

Personalised recommendations