Skip to main content

Relationship between cerebral microbleeds and white matter MR hyperintensities in systemic lupus erythematosus: a retrospective observational study

Abstract

Purpose

White matter hyperintensities (WMH) and cerebral microbleeds (CMBs) are known to be associated with small vessel diseases (SVD) and neuroinflammation. The purpose was to investigate the relationship between CMBs and WMH in patients with systemic lupus erythematosus (SLE).

Methods

Thirty-one SLE patients with WMH and 27 SLE patients with normal brain MRI were compared. The presence, location, and grading of CMBs were assessed using susceptibility-weighted images. WMH volume was quantitatively measured. Clinical characteristics and serologic markers were compared. We also performed two separate subgroup analyses after (1) dividing WMH into inflammatory lesion vs. SVD subgroups and (2) dividing WMH into those with vs. without CMB subgroups.

Results

The WMH group showed more frequent CMBs than the normal MR group (p < 0.001). The WMH group showed higher SLE disease activity index, longer disease duration, and a higher incidence of antiphospholipid syndrome than the normal MR group (p = 0.02, 0.04, and 0.04, respectively). There was a moderate correlation between WMH volume and CMB grading (r = 0.49, p = 0.006). Within the WMH group, the inflammatory lesion subgroup showed more frequent CMBs and larger WMH volume than the SVD subgroup (p < 0.001 and 0.02, respectively). The WMH with CMB subgroup had larger WMH volume than the WMH without CMB subgroup (p = 0.004).

Conclusion

In patients with SLE, CMBs could be related to large-volume WMH and inflammatory lesions. CMBs along with severe WMH could be used as an imaging biomarker of vasculitis in patients with SLE.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

WMH:

White matter hyperintensities

CMBs:

Cerebral microbleeds

APS:

Antiphospholipid syndrome

SLE:

Systemic lupus erythematosus

SLEDAI:

SLE disease activity index

SVD:

Small vessel disease

NPSLE:

Neuropsychiatric systemic lupus erythematosus

CNS:

Central nervous system

References

  1. Trysberg E, Nylen K, Rosengren LE, Tarkowski A (2003) Neuronal and astrocytic damage in systemic lupus erythematosus patients with central nervous system involvement. Arthritis Rheum 48(10):2881–2887. https://doi.org/10.1002/art.11279

    Article  PubMed  Google Scholar 

  2. Ramage AE, Fox PT, Brey RL, Narayana S, Cykowski MD, Naqibuddin M, Sampedro M, Holliday SL, Franklin C, Wallace DJ, Weisman MH, Petri M (2011) Neuroimaging evidence of white matter inflammation in newly diagnosed systemic lupus erythematosus. Arthritis Rheum 63(10):3048–3057. https://doi.org/10.1002/art.30458

    Article  PubMed  PubMed Central  Google Scholar 

  3. Santer DM, Yoshio T, Minota S, Moller T, Elkon KB (2009) Potent induction of IFN-alpha and chemokines by autoantibodies in the cerebrospinal fluid of patients with neuropsychiatric lupus. J Immunol 182(2):1192–1201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Correa DG, Zimmermann N, Pereira DB, Doring TM, Netto TM, Ventura N, Fonseca RP, Gasparetto EL (2016) Evaluation of white matter integrity in systemic lupus erythematosus by diffusion tensor magnetic resonance imaging: a study using tract-based spatial statistics. Neuroradiology 58(8):819–825. https://doi.org/10.1007/s00234-016-1688-8

    Article  PubMed  Google Scholar 

  5. Ellis SG, Verity MA (1979) Central nervous system involvement in systemic lupus erythematosus: a review of neuropathologic findings in 57 cases, 1955–1977. Semin Arthritis Rheum 8(3):212–221

    Article  PubMed  CAS  Google Scholar 

  6. Wiseman SJ, Bastin ME, Jardine CL, Barclay G, Hamilton IF, Sandeman E, Hunt D, Amft EN, Thomson S, Belch JF, Ralston SH, Wardlaw JM (2016) Cerebral small vessel disease burden is increased in systemic lupus erythematosus. Stroke 47(11):2722–2728. https://doi.org/10.1161/strokeaha.116.014330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sibbitt WL Jr, Brooks WM, Kornfeld M, Hart BL, Bankhurst AD, Roldan CA (2010) Magnetic resonance imaging and brain histopathology in neuropsychiatric systemic lupus erythematosus. Semin Arthritis Rheum 40(1):32–52. https://doi.org/10.1016/j.semarthrit.2009.08.005

    Article  PubMed  Google Scholar 

  8. Cohen D, Rijnink EC, Nabuurs RJ, Steup-Beekman GM, Versluis MJ, Emmer BJ, Zandbergen M, van Buchem MA, Allaart CF, Wolterbeek R, Bruijn JA, van Duinen SG, Huizinga TW, Bajema IM (2017) Brain histopathology in patients with systemic lupus erythematosus: identification of lesions associated with clinical neuropsychiatric lupus syndromes and the role of complement. Rheumatology (Oxford) 56 (1):77–86. doi:https://doi.org/10.1093/rheumatology/kew341

  9. Luyendijk J, Steens SC, Ouwendijk WJ, Steup-Beekman GM, Bollen EL, van der Grond J, Huizinga TW, Emmer BJ, van Buchem MA (2011) Neuropsychiatric systemic lupus erythematosus: lessons learned from magnetic resonance imaging. Arthritis Rheum 63(3):722–732. https://doi.org/10.1002/art.30157

    Article  PubMed  CAS  Google Scholar 

  10. Schmidt-Wilcke T, Cagnoli P, Wang P, Schultz T, Lotz A, McCune WJ, Sundgren PC (2014) Diminished white matter integrity in patients with systemic lupus erythematosus. Neuroimage Clin 5:291–297. https://doi.org/10.1016/j.nicl.2014.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  11. Magro-Checa C, Ercan E, Wolterbeek R, Emmer B, van der Wee NJ, Middelkoop HA, Kruyt ND, Ronen I, van Buchem MA, Huizinga TW, Steup-Beekman GM (2016) Changes in white matter microstructure suggest an inflammatory origin of neuropsychiatric systemic lupus erythematosus. Arthritis Rheum 68(8):1945–1954. https://doi.org/10.1002/art.39653

    Article  CAS  Google Scholar 

  12. Ercan E, Ingo C, Tritanon O, Magro-Checa C, Smith A, Smith S, Huizinga T, van Buchem MA, Ronen I (2015) A multimodal MRI approach to identify and characterize microstructural brain changes in neuropsychiatric systemic lupus erythematosus. Neuroimage Clin 8:337–344. https://doi.org/10.1016/j.nicl.2015.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sarbu N, Toledano P, Calvo A, Roura E, Sarbu MI, Espinosa G, Llado X, Cervera R, Bargallo N (2017) Advanced MRI techniques: biomarkers in neuropsychiatric lupus. Lupus 26(5):510–516. https://doi.org/10.1177/0961203316674820

    Article  PubMed  CAS  Google Scholar 

  14. Shastri R, Shah G, Wang P, Cagnoli P, Schmidt-Wilcke T, McCune J, Harris R, Sundgren P (2016) MR diffusion tractography to identify and characterize microstructural white matter tract changes in systemic lupus erythematosus patients. Acad Radiol 23(11):1431–1440. https://doi.org/10.1016/j.acra.2016.03.019

    Article  PubMed  Google Scholar 

  15. Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Al-Shahi Salman R, Warach S, Launer LJ, Van Buchem MA, Breteler MM (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 8(2):165–174. https://doi.org/10.1016/s1474-4422(09)70013-4

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gregoire SM, Chaudhary UJ, Brown MM, Yousry TA, Kallis C, Jager HR, Werring DJ (2009) The microbleed anatomical rating scale (MARS): reliability of a tool to map brain microbleeds. Neurology 73(21):1759–1766. https://doi.org/10.1212/WNL.0b013e3181c34a7d

    Article  PubMed  CAS  Google Scholar 

  17. Kim BJ, Lee SH (2013) Cerebral microbleeds: their associated factors, radiologic findings, and clinical implications. J Stroke 15(3):153–163. https://doi.org/10.5853/jos.2013.15.3.153

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zivadinov R, Ramasamy DP, Benedict RR, Polak P, Hagemeier J, Magnano C, Dwyer MG, Bergsland N (2016) Cerebral microbleeds in multiple sclerosis evaluated on susceptibility-weighted images and quantitative susceptibility maps: a case-control study. Radiology 281(3):884–895

    Article  PubMed  Google Scholar 

  19. Shams S, Martola J, Granberg T, Li X, Shams M, Fereshtehnejad SM, Cavallin L, Aspelin P, Kristoffersen-Wiberg M, Wahlund LO (2015) Cerebral microbleeds: different prevalence, topography, and risk factors depending on dementia diagnosis-the Karolinska imaging dementia study. AJNR Am J Neuroradiol 36(4):661–666. https://doi.org/10.3174/ajnr.A4176

    Article  PubMed  CAS  Google Scholar 

  20. Haller S, Vernooij MW, Kuijer JPA, Larsson EM, Jager HR (2018) Cerebral microbleeds: imaging and clinical significance. Radiology 287(1):11–28. https://doi.org/10.1148/radiol.2018170803

    Article  PubMed  Google Scholar 

  21. Albayram S, Saip S, Hasiloglu ZI, Teke M, Ceyhan E, Tutuncu M, Selcuk H, Kina A, Siva A (2011) Evaluation of parenchymal neuro-behcet disease by using susceptibility-weighted imaging. AJNR Am J Neuroradiol 32(6):1050–1055. https://doi.org/10.3174/ajnr.A2477

    Article  PubMed  CAS  Google Scholar 

  22. Belliveau JG, Bauman GS (2017) Initial investigation into microbleeds and white matter signal changes following radiotherapy for low-grade and benign brain tumors using ultra-high-field MRI techniques. AJNR Am J Neuroradiol 38(12):2251–2256. https://doi.org/10.3174/ajnr.A5395

    Article  PubMed  Google Scholar 

  23. Rubinstein LJ, Urich H (1963) Meningo-encephalitis of Behcet’s disease: case report with pathological findings. Brain 86:151–160

    Article  PubMed  CAS  Google Scholar 

  24. Sarbu N, Alobeidi F, Toledano P, Espinosa G, Giles I, Rahman A, Yousry T, Capurro S, Jager R, Cervera R, Bargallo N (2015) Brain abnormalities in newly diagnosed neuropsychiatric lupus: systematic MRI approach and correlation with clinical and laboratory data in a large multicenter cohort. Autoimmun Rev 14(2):153–159. https://doi.org/10.1016/j.autrev.2014.11.001

    Article  PubMed  Google Scholar 

  25. The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes (1999). Arthritis Rheum 42(4):599–608. https://doi.org/10.1002/1529-0131(199904)42:4<599::aid-anr2>3.0.co;2-f

  26. Yoo BI, Lee JJ, Han JW, Oh SY, Lee EY, MacFall JR, Payne ME, Kim TH, Kim JH, Kim KW (2014) Application of variable threshold intensity to segmentation for white matter hyperintensities in fluid attenuated inversion recovery magnetic resonance images. Neuroradiology 56(4):265–281. https://doi.org/10.1007/s00234-014-1322-6

    Article  PubMed  Google Scholar 

  27. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, Lindley RI, O'Brien JT, Barkhof F, Benavente OR, Black SE, Brayne C, Breteler M, Chabriat H, Decarli C, de Leeuw FE, Doubal F, Duering M, Fox NC, Greenberg S, Hachinski V, Kilimann I, Mok V, Oostenbrugge R, Pantoni L, Speck O, Stephan BC, Teipel S, Viswanathan A, Werring D, Chen C, Smith C, van Buchem M, Norrving B, Gorelick PB, Dichgans M (2013) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12(8):822–838. https://doi.org/10.1016/s1474-4422(13)70124-8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH (1992) Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum 35(6):630–640

    Article  PubMed  CAS  Google Scholar 

  29. Pomper MG, Miller TJ, Stone JH, Tidmore WC, Hellmann DB (1999) CNS vasculitis in autoimmune disease: MR imaging findings and correlation with angiography. AJNR Am J Neuroradiol 20(1):75–85

    PubMed  CAS  Google Scholar 

  30. Shaharir SS, Osman SS, Md Rani SA, Sakthiswary R, Said MSM (2018) Factors associated with increased white matter hyperintense lesion (WMHI) load in patients with systemic lupus erythematosus (SLE). Lupus 27(1):25–32. https://doi.org/10.1177/0961203317707062

    Article  PubMed  CAS  Google Scholar 

  31. Akoudad S, de Groot M, Koudstaal PJ, van der Lugt A, Niessen WJ, Hofman A, Ikram MA, Vernooij MW (2013) Cerebral microbleeds are related to loss of white matter structural integrity. Neurology 81(22):1930–1937. https://doi.org/10.1212/01.wnl.0000436609.20587.65

    Article  PubMed  Google Scholar 

  32. Appenzeller S, Vasconcelos Faria A, Li LM, Costallat LT, Cendes F (2008) Quantitative magnetic resonance imaging analyses and clinical significance of hyperintense white matter lesions in systemic lupus erythematosus patients. Ann Neurol 64(6):635–643. https://doi.org/10.1002/ana.21483

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Young Lee.

Ethics declarations

Funding

This study was funded by a grant from the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (Grant no. HI09C1379 [A092077]).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.

Informed consent

For this type of retrospective study formal consent is not required.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yeoh, H., Lee, J.Y., Lee, YJ. et al. Relationship between cerebral microbleeds and white matter MR hyperintensities in systemic lupus erythematosus: a retrospective observational study. Neuroradiology 61, 265–274 (2019). https://doi.org/10.1007/s00234-018-2130-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-018-2130-1

Keywords

  • Systemic lupus erythematosus
  • White matter
  • Cerebral microbleeds
  • Magnetic resonance imaging
  • Susceptibility weighted imaging