Skip to main content

Advertisement

Log in

Magnetic resonance imaging of tuberous sclerosis complex with or without epilepsy at 7 T

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

This study was conducted to determine the benefit of magnetic resonance imaging (MRI) at 7 T in detecting structural lesions and previously unidentified abnormalities in patients with tuberous sclerosis complex (TSC).

Methods

Thirteen patients with TSC (8–36 years, seven males) previously diagnosed by 3 T MRI underwent additional imaging at 7 T, which included T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE), T2-weighted turbo spin echo (TSE), SPACE fluid attenuated inversion recovery (FLAIR), susceptibility weighted imaging (SWI), white matter suppressed (WM-suppressed), and gray-white matter tissue border enhancement (GW-TBE) MPRAGE sequences. Subtle lesions, tuberal morphology, and perituberal cortex abnormalities were examined and compared to those observed at 3 T MRI using standard sequences.

Results

Improved visualization of TSC lesions was achieved in all subjects at 7 T compared to 3 T imaging, and three subjects received resective surgery. The 7 T T1- and T2-weighted images had high spatial resolution and provided a clear delineation of the perituberal cortex. SWI revealed abnormal blood vessel morphology. WM-suppressed and GW-TBE protocols, adjusted specifically for TSC imaging, aided in visualizing lesions and uncovered more extensive subtle lesions and abnormalities beyond the conventionally detected tubers.

Conclusions

Due to its high spatial resolution and powerful new imaging protocols, 7 T MRI provided a better evaluation of subtle lesions and perituberal details compared with conventional MRI at 3 T, with potential implications for diagnosis and operative treatment of TSC and its related epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TSC:

Tuberous sclerosis complex

MPRAGE:

Magnetization-prepared rapid gradient-echo

FLAIR:

Fluid attenuated inversion recovery

SWI:

Susceptibility weighted imaging

WM-suppressed:

White matter suppressed

GW-TBE:

Gray-white matter tissue border enhancement

TSE:

Turbo spin echo

SNR:

Signal-to-noise ratio

EEG:

Electroencephalography

PET:

Positron emission computed tomography

SEEG:

Stereotactic intracranial EEG

References

  1. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356. https://doi.org/10.1056/NEJMra055323

    Article  PubMed  CAS  Google Scholar 

  2. Major P, Rakowski S, Simon MV, Cheng ML, Eskandar E, Baron J, Leeman BA, Frosch MP, Thiele EA (2009) Are cortical tubers epileptogenic? Evidence from electrocorticography. Epilepsia 50:147–154. https://doi.org/10.1111/j.1528-1167.2008.01814.x

    Article  PubMed  Google Scholar 

  3. Smalley SL (1998) Autism and tuberous sclerosis. J Autism Dev Disord 28:407–414. https://doi.org/10.1023/A:1026052421693

    Article  PubMed  CAS  Google Scholar 

  4. Thiele EA (2004) Managing epilepsy in tuberous sclerosis complex. J Child Neurol 19:680–686. https://doi.org/10.1177/08830738040190090801

    Article  PubMed  Google Scholar 

  5. Prather P, de Vries PJ (2004) Behavioral and cognitive aspects of tuberous sclerosis complex. J Child Neurol 19:666–674. https://doi.org/10.1177/08830738040190090601

    Article  PubMed  Google Scholar 

  6. Jozwiak S, Goodman M, Lamm SH (1998) Poor mental development in patients with tuberous sclerosis complex: clinical risk factors. Arch Neurol 55:379–384. https://doi.org/10.1001/archneur.55.3.379

    Article  PubMed  CAS  Google Scholar 

  7. Ohtsuka Y, Ohmori I, Oka E (1998) Long-term follow-up of childhood epilepsy associated with tuberous sclerosis. Epilepsia 39:1158–1163. https://doi.org/10.1200/JCO.2010.28.4786

    Article  PubMed  CAS  Google Scholar 

  8. Zaroff CM, Devinsky O, Miles D, Barr WB (2004) Cognitive and behavioral correlates of tuberous sclerosis complex. J Child Neurol 19:847–852

    Article  PubMed  Google Scholar 

  9. Curatolo P, Bombardieri R, Verdecchia M, Seri S (2005) Intractable seizures in tuberous sclerosis complex: from molecular pathogenesis to the rationale for treatment. J Child Neurol 20:318–325. https://doi.org/10.1177/08830738050200040901

    Article  PubMed  Google Scholar 

  10. Nixon JR, Miller GM, Okazaki H, Gomez MR (1989) Cerebral tuberous sclerosis: postmortem magnetic resonance imaging and pathologic anatomy. Mayo Clin Proc 64:305–311. https://doi.org/10.1016/S0025-6196(12)65250-1

    Article  PubMed  CAS  Google Scholar 

  11. Moore KR, Funke ME, Constantino T, Katzman GL, Lewine JD (2002) Magnetoencephalographically directed review of high-spatial-resolution surface-coil MR images improves lesion detection in patients with extratemporal epilepsy. Radiology 225:880–887. https://doi.org/10.1148/radiol.2253011597

    Article  PubMed  Google Scholar 

  12. Chalifoux JR, Perry N, Katz JS, Wiggins GC, Roth J, Miles D, Devinsky O, Weiner HL, Milla SS (2013) The ability of high field strength 7-T magnetic resonance imaging to reveal previously uncharacterized brain lesions in patients with tuberous sclerosis complex. J Neurosurg Pediatr 11:268–273. https://doi.org/10.3171/2012.12.PEDS12338

    Article  PubMed  Google Scholar 

  13. Carlson C, Teutonico F, Elliott RE, Moshel YA, LaJoie J, Miles D, Devinsky O, Weiner HL (2011) Bilateral invasive electroencephalography in patients with tuberous sclerosis complex: a path to surgery? J Neurosurg Pediatr 7:421–430. https://doi.org/10.3171/2011.1.PEDS10348

    Article  PubMed  Google Scholar 

  14. Gallagher A, Chu-Shore CJ, Montenegro MA, Major P, Costello DJ, Lyczkowski DA, Muzykewicz D, Doherty C, Thiele EA (2009) Associations between electroencephalographic and magnetic resonance imaging findings in tuberous sclerosis complex. Epilepsy Res 87:197–202. https://doi.org/10.1016/j.eplepsyres.2009.09.001

    Article  PubMed  Google Scholar 

  15. Jacobs J, Rohr A, Moeller F, Boor R, Kobayashi E, LeVan Meng P, Stephani U, Gotman J, Siniatchkin M (2008) Evaluation of epileptogenic networks in children with tuberous sclerosis complex using EEG-fMRI. Epilepsia 49:816–825. https://doi.org/10.1111/j.1528-1167.2007.01486.x

    Article  PubMed  Google Scholar 

  16. Leal AJR, Dias AI, Vieira JP, Moreira A, Távora L, Calado E (2008) Analysis of the dynamics and origin of epileptic activity in patients with tuberous sclerosis evaluated for surgery of epilepsy. Clin Neurophysiol 119:853–861. https://doi.org/10.1016/j.clinph.2007.11.176

    Article  PubMed  Google Scholar 

  17. Kamimura T, Tohyama J, Oishi M, Akasaka N, Kanazawa O, Sasagawa M, Kato M, Ohno K, Masuda H, Kameyama S, Uchiyama M (2006) Magnetoencephalography in patients with tuberous sclerosis and localization-related epilepsy. Epilepsia 47:991–997. https://doi.org/10.1111/j.1528-1167.2006.00511.x

    Article  PubMed  Google Scholar 

  18. Moshel YA, Elliott R, Teutonico F, Sellin J, Carlson C, Devinsky O, Weiner HL (2010) Do tubers contain function? Resection of epileptogenic foci in perirolandic cortex in children with tuberous sclerosis complex. Epilepsia 51:1242–1251. https://doi.org/10.1111/j.1528-1167.2009.02493.x

    Article  PubMed  Google Scholar 

  19. Henry TR, Chupin M, Lehéricy S et al (2011) Hippocampal sclerosis in temporal lobe epilepsy: findings at 7 T. Radiology 261:199–209. https://doi.org/10.1148/radiol.11101651

    Article  PubMed  PubMed Central  Google Scholar 

  20. De Ciantis A, Barkovich AJ, Cosottini M et al (2015) Ultra-high-field MR imaging in polymicrogyria and epilepsy. Am J Neuroradiol 36:309–316. https://doi.org/10.3174/ajnr.A4116

    Article  PubMed  Google Scholar 

  21. De Ciantis A, Barba C, Tassi L et al (2016) 7T MRI in focal epilepsy with unrevealing conventional field strength imaging. Epilepsia 57:445–454. https://doi.org/10.1111/epi.13313

    Article  PubMed  Google Scholar 

  22. Roach ES, Sparagana SP (2004) Diagnosis of tuberous sclerosis complex. J Child Neurol 19:643–649. https://doi.org/10.1177/08830738040190090301

    Article  PubMed  Google Scholar 

  23. Saranathan M, Tourdias T, Bayram E, Ghanouni P, Rutt BK (2015) Optimization of white-matter-nulled magnetization prepared rapid gradient echo (MP-RAGE) imaging. Magn Reson Med 73:1786–1794. https://doi.org/10.1002/mrm.25298

    Article  PubMed  Google Scholar 

  24. Costagli M, Kelley DAC, Symms MR, Biagi L, Stara R, Maggioni E, Tiberi G, Barba C, Guerrini R, Cosottini M, Tosetti M (2014) Tissue border enhancement by inversion recovery MRI at 7.0 tesla. Neuroradiology 56:517–523. https://doi.org/10.1007/s00234-014-1365-8

    Article  PubMed  Google Scholar 

  25. Brown M, Semelka R, Nishino TK (2004) MRI: basic principles and applications, 3rd edition. Med Phys. https://doi.org/10.1118/1.1636163

  26. Sinclair D (2004) MRI principles. Radiography 10:241. https://doi.org/10.1016/j.radi.2004.04.001

    Article  Google Scholar 

  27. Ridler K, Bullmore ET, De Vries PJ et al (2001) Widespread anatomical abnormalities of grey and white matter structure in tuberous sclerosis. Psychol Med 31:1437–1446. https://doi.org/10.1017/S0033291701004561

    Article  PubMed  CAS  Google Scholar 

  28. Xiao Z, Xiang J, Holowka S, Hunjan A, Sharma R, Otsubo H, Chuang S (2006) Volumetric localization of epileptic activities in tuberous sclerosis using synthetic aperture magnetometry. Pediatr Radiol 36:16–21. https://doi.org/10.1007/s00247-005-0013-1

    Article  PubMed  Google Scholar 

  29. Ruppe V, Dilsiz P, Reiss CS, Carlson C, Devinsky O, Zagzag D, Weiner HL, Talos DM (2014) Developmental brain abnormalities in tuberous sclerosis complex: a comparative tissue analysis of cortical tubers and perituberal cortex. Epilepsia 55:539–550. https://doi.org/10.1111/epi.12545

    Article  PubMed  CAS  Google Scholar 

  30. Kannan L, Vogrin S, Bailey C, Maixner W, Harvey AS (2016) Centre of epileptogenic tubers generate and propagate seizures in tuberous sclerosis. Brain 139:2653–2667. https://doi.org/10.1093/brain/aww192

    Article  PubMed  Google Scholar 

  31. Tong KA, Ashwal S, Obenaus A, Nickerson JP, Kido D, Haacke EM (2008) Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol 29:9–17. https://doi.org/10.3174/ajnr.A0786

    Article  PubMed  CAS  Google Scholar 

  32. Thomas B, Somasundaram S, Thamburaj K, Kesavadas C, Gupta AK, Bodhey NK, Kapilamoorthy TR (2008) Clinical applications of susceptibility weighted MR imaging of the brain—a pictorial review. Neuroradiology 50:105–116. https://doi.org/10.1007/s00234-007-0316-z

    Article  PubMed  Google Scholar 

  33. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YCN (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. Am J Neuroradiol 30:19–30. https://doi.org/10.3174/ajnr.A1400

    Article  PubMed  CAS  Google Scholar 

  34. Griffiths PD, Bolton P, Verity C (1998) White matter abnormalities in tuberous sclerosis complex. Acta Radiol 39:482–486

    Article  PubMed  CAS  Google Scholar 

  35. Liang S, Li A, Zhao M, Jiang H, Yu S, Meng X, Sun Y (2010) Epilepsy surgery in tuberous sclerosis complex: emphasis on surgical candidate and neuropsychology. Epilepsia 51:2316–2321. https://doi.org/10.1111/j.1528-1167.2010.02669.x

    Article  PubMed  Google Scholar 

  36. Wissmeyer M, Altrichter S, Pereira VM, Viallon M, Federspiel A, Seeck M, Schaller K, Lövblad KO (2010) Arterial spin-labeling MRI perfusion in tuberous sclerosis: correlation with PET. J Neuroradiol 37:127–130. https://doi.org/10.1016/j.neurad.2009.05.005

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients and their family members for their cooperation during examination and follow-ups. We would also like to thank Ms. Jing An (Simens Shenzhen MR Ltd.), Ms. Kun Hu and Ms. Ziwei Cheng for their technical assistance in MR experiments and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuli Liang or Rong Xue.

Ethics declarations

Funding

This study was funded in part by the Ministry of Science and Technology of China (MOST) (Grant no. 2015CB351701), the National Nature Science Foundation of China (Grant nos. 31730039 and 81771388) and the Chinese Academy of Sciences Strategic Priority Research Program B (Grant nos. XDB02010001 and XDB02050001).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

KS and JC are joint first authors and contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Cui, J., Wang, B. et al. Magnetic resonance imaging of tuberous sclerosis complex with or without epilepsy at 7 T. Neuroradiology 60, 785–794 (2018). https://doi.org/10.1007/s00234-018-2040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-018-2040-2

Keywords

Navigation