Skip to main content

Advertisement

Log in

Cardiac-gated intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for the investigation of intracranial cerebrospinal fluid dynamics in the lateral ventricle: a feasibility study

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Intravoxel incoherent motion (IVIM) in diffusion-weighted magnetic resonance imaging (DW-MRI) attributes the signal attenuation to the molecular diffusion and to a faster pseudo-diffusion. Purpose of the study was to demonstrate the feasibility of IVIM for the investigation of intracranial cerebrospinal fluid (CSF) dynamics.

Methods

Cardiac-gated DW-MRI images with fifteen b-values (0–1300s/mm2) along three orthogonal directions (mediolateral (ML), anteroposterior (AP), and craniocaudal (CC)) were acquired during maximum systole and diastole in 10 healthy volunteers (6 males, mean age 36 ± 15 years). A pixel-wise bi-exponential fitting with an iterative nonparametric algorithm was carried out to calculate the following parameters: diffusion coefficient (D), fast diffusion coefficient (D*), and fraction of fast diffusion (f). Region of interest measurements were performed in both lateral ventricles. Comparison of IVIM parameters was performed among two cardiac cycle acquisitions and among the diffusion-encoding directions using a paired Student’s t test.

Results

f significantly (p < 0.05) depended on the diffusion-encoding direction and on the cardiac cycle (diastole AP 0.30 ± 0.13, ML 0.22 ± 0.12, CC 0.26 ± 0.17; systole AP 0.45 ± 0.17, ML 0.34 ± 0.15, CC 0.40 ± 0.21). Neither a cardiac cycle nor a direction dependency was found among mean D values (which is in line with the expected intraventricular isotropic diffusion) and D* values (p > 0.05 each).

Conclusion

The fraction of fast diffusion from IVIM is feasible to detect a direction-dependent and cardiac-dependent pulsatile CSF flow within the lateral ventricles allowing for quantitative monitoring of CSF dynamics. This technique might provide opportunities to further investigate the pathophysiology of various neurological disorders involving altered CSF dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407. https://doi.org/10.1148/radiology.161.2.3763909

    Article  PubMed  Google Scholar 

  2. Bisdas S (2013) Are we ready to image the incoherent molecular motion in our minds? Neuroradiology 55(5):537–540. https://doi.org/10.1007/s00234-013-1192-3

    Article  PubMed  Google Scholar 

  3. Mou A, Zhang C, Li M, Jin F, Song Q, Liu A, Li Z (2017) Evaluation of myocardial microcirculation using intravoxel incoherent motion imaging. J Magn Reson Imaging 46:1818–1828. https://doi.org/10.1002/jmri.25706

    Article  PubMed  Google Scholar 

  4. Cho GY, Moy L, Kim SG, Baete SH, Moccaldi M, Babb JS, Sodickson DK, Sigmund EE (2016) Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors. Eur Radiol 26(8):2547–2558. https://doi.org/10.1007/s00330-015-4087-3

    Article  PubMed  Google Scholar 

  5. Nguyen A, Ledoux JB, Omoumi P, Becce F, Forget J, Federau C (2016) Application of intravoxel incoherent motion perfusion imaging to shoulder muscles after a lift-off test of varying duration. NMR Biomed 29(1):66–73. https://doi.org/10.1002/nbm.3449

    Article  PubMed  Google Scholar 

  6. Hauser T, Essig M, Jensen A, Gerigk L, Laun FB, Munter M, Simon D, Stieltjes B (2013) Characterization and therapy monitoring of head and neck carcinomas using diffusion-imaging-based intravoxel incoherent motion parameters-preliminary results. Neuroradiology 55(5):527–536. https://doi.org/10.1007/s00234-013-1154-9

    Article  PubMed  Google Scholar 

  7. Federau C, Sumer S, Becce F, Maeder P, O'Brien K, Meuli R, Wintermark M (2014) Intravoxel incoherent motion perfusion imaging in acute stroke: initial clinical experience. Neuroradiology 56(8):629–635. https://doi.org/10.1007/s00234-014-1370-y

    Article  CAS  PubMed  Google Scholar 

  8. Bisdas S, Koh TS, Roder C, Braun C, Schittenhelm J, Ernemann U, Klose U (2013) Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: feasibility of the method and initial results. Neuroradiology 55(10):1189–1196. https://doi.org/10.1007/s00234-013-1229-7

    Article  PubMed  Google Scholar 

  9. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2):497–505. https://doi.org/10.1148/radiology.168.2.3393671

    Article  PubMed  Google Scholar 

  10. Finkenstaedt T, Klarhoefer M, Eberhardt C, Becker AS, Andreisek G, Boss A, Rossi C (2017) The IVIM signal in the healthy cerebral gray matter: a play of spherical and non-spherical components. NeuroImage 152:340–347. https://doi.org/10.1016/j.neuroimage.2017.03.004

    Article  PubMed  Google Scholar 

  11. Zacharopoulos NG, Narayana PA (1998) Selective measurement of white matter and gray matter diffusion trace values in normal human brain. Med Phys 25(11):2237–2241. https://doi.org/10.1118/1.598424

    Article  CAS  PubMed  Google Scholar 

  12. Alexander AL, Hasan KM, Lazar M, Tsuruda JS, Parker DL (2001) Analysis of partial volume effects in diffusion-tensor MRI. Magn Reson Med 45(5):770–780

    Article  CAS  PubMed  Google Scholar 

  13. Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y (2009) Free water elimination and mapping from diffusion MRI. Magn Reson Med 62(3):717–730. https://doi.org/10.1002/mrm.22055

    Article  PubMed  Google Scholar 

  14. Le Bihan D, Breton E, Aubin ML, Lallemand D, Vignaud J (1987) Study of cerebrospinal fluid dynamics by MRI of intravoxel incoherent motions (IVIM). J Neuroradiol 14(4):388–395

    PubMed  Google Scholar 

  15. Bisdas S, Klose U (2015) IVIM analysis of brain tumors: an investigation of the relaxation effects of CSF, blood, and tumor tissue on the estimated perfusion fraction. MAGMA 28(4):377–383. https://doi.org/10.1007/s10334-014-0474-z

    Article  PubMed  Google Scholar 

  16. Federau C, O'Brien K (2015) Increased brain perfusion contrast with T(2)-prepared intravoxel incoherent motion (T2prep IVIM) MRI. NMR Biomed 28(1):9–16. https://doi.org/10.1002/nbm.3223

    PubMed  Google Scholar 

  17. Stieb S, Boss A, Wurnig MC, Ozbay PS, Weiss T, Guckenberger M, Riesterer O, Rossi C (2016) Non-parametric intravoxel incoherent motion analysis in patients with intracranial lesions: test-retest reliability and correlation with arterial spin labeling. Neuroimage Clin 11:780–788. https://doi.org/10.1016/j.nicl.2016.05.022

    Article  PubMed  PubMed Central  Google Scholar 

  18. Becker AS, Boss A, Klarhöfer M, Finkenstaedt T, Wurnig MC, Rossi C (2017) Investigation of the pulsatility of cerebrospinal fluid using cardiac-gated intravoxel incoherent motion imaging. Neuroimage 169:126–133. https://doi.org/10.1016/j.neuroimage.2017.12.017

    Article  PubMed  Google Scholar 

  19. Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10. https://doi.org/10.1186/2045-8118-11-10

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hladky SB, Barrand MA (2014) Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11(1):26. https://doi.org/10.1186/2045-8118-11-26

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yamada S, Tsuchiya K, Bradley WG, Law M, Winkler ML, Borzage MT, Miyazaki M, Kelly EJ, McComb JG (2015) Current and emerging MR imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time-spatial labeling inversion pulse. AJNR Am J Neuroradiol 36(4):623–630. https://doi.org/10.3174/ajnr.A4030

    Article  CAS  PubMed  Google Scholar 

  22. Zhu DC, Xenos M, Linninger AA, Penn RD (2006) Dynamics of lateral ventricle and cerebrospinal fluid in normal and hydrocephalic brains. J Magn Reson Imaging 24(4):756–770. https://doi.org/10.1002/jmri.20679

    Article  PubMed  Google Scholar 

  23. Yildiz S, Thyagaraj S, Jin N, Zhong X, Heidari Pahlavian S, Martin BA, Loth F, Oshinski J, Sabra KG (2017) Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real-time phase-contrast MRI. J Magn Reson Imaging 46:431–439. https://doi.org/10.1002/jmri.25591

    Article  PubMed  Google Scholar 

  24. Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22(3):651–671. https://doi.org/10.1148/radiographics.22.3.g02ma11651

    Article  PubMed  Google Scholar 

  25. Kamiya K, Hori M, Irie R, Miyajima M, Nakajima M, Kamagata K, Tsuruta K, Saito A, Nakazawa M, Suzuki Y, Mori H, Kunimatsu A, Arai H, Aoki S, Abe O (2017) Diffusion imaging of reversible and irreversible microstructural changes within the corticospinal tract in idiopathic normal pressure hydrocephalus. Neuroimage Clin 14:663–671. https://doi.org/10.1016/j.nicl.2017.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lagana MM, Chaudhary A, Balagurunathan D, Utriainen D, Kokeny P, Feng W, Cecconi P, Hubbard D, Haacke EM (2014) Cerebrospinal fluid flow dynamics in multiple sclerosis patients through phase contrast magnetic resonance imaging. Curr Neurovasc Res 11(4):349–358

    Article  PubMed  Google Scholar 

  27. Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D (2003) Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2(8):506–511

    Article  PubMed  Google Scholar 

  28. Wurnig MC, Donati OF, Ulbrich E, Filli L, Kenkel D, Thoeny HC, Boss A (2015) Systematic analysis of the intravoxel incoherent motion threshold separating perfusion and diffusion effects: proposal of a standardized algorithm. Magn Reson Med 74(5):1414–1422. https://doi.org/10.1002/mrm.25506

    Article  PubMed  Google Scholar 

  29. Basser PJ, Pierpaoli C (2011) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. 1996. J Magn Reson 213(2):560–570. https://doi.org/10.1016/j.jmr.2011.09.022

    Article  CAS  PubMed  Google Scholar 

  30. Le Bihan D, Turner R (1992) The capillary network: a link between IVIM and classical perfusion. Magn Reson Med 27(1):171–178

    Article  PubMed  Google Scholar 

  31. Wu WC, Chen YF, Tseng HM, Yang SC, My PC (2015) Caveat of measuring perfusion indexes using intravoxel incoherent motion magnetic resonance imaging in the human brain. Eur Radiol 25(8):2485–2492. https://doi.org/10.1007/s00330-015-3655-x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stadlbauer A, Salomonowitz E, van der Riet W, Buchfelder M, Ganslandt O (2010) Insight into the patterns of cerebrospinal fluid flow in the human ventricular system using MR velocity mapping. NeuroImage 51(1):42–52. https://doi.org/10.1016/j.neuroimage.2010.01.110

    Article  PubMed  Google Scholar 

  33. Siyahhan B, Knobloch V, de Zelicourt D, Asgari M, Schmid Daners M, Poulikakos D, Kurtcuoglu V (2014) Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles. J R Soc Interface 11(94):20131189. https://doi.org/10.1098/rsif.2013.1189

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311(5761):629–632. https://doi.org/10.1126/science.1119133

    Article  CAS  PubMed  Google Scholar 

  35. Oreskovic D, Klarica M (2014) A new look at cerebrospinal fluid movement. Fluids Barriers CNS 11:16. https://doi.org/10.1186/2045-8118-11-16

    Article  PubMed  PubMed Central  Google Scholar 

  36. Petersson S, Dyverfeldt P, Gårdhagen R, Karlsson M, Ebbers T (2010) Simulation of phase contrast MRI of turbulent flow. Magn Reson Med 64(4):1039–1046. https://doi.org/10.1002/mrm.22494

    Article  PubMed  Google Scholar 

  37. O’Brien KR, Cowan BR, Jain M, Stewart RAH, Kerr AJ, Young AA (2008) MRI phase contrast velocity and flow errors in turbulent stenotic jets. J Magn Reson Imaging 28(1):210–218. https://doi.org/10.1002/jmri.21395

    Article  PubMed  Google Scholar 

  38. Gurney-Champion OJ, Froeling M, Klaassen R, Runge JH, Bel A, van Laarhoven HWM, Stoker J, Nederveen AJ (2016) Minimizing the acquisition time for intravoxel incoherent motion magnetic resonance imaging acquisitions in the liver and pancreas. Investig Radiol 51(4):211–220. https://doi.org/10.1097/rli.0000000000000225

    Article  Google Scholar 

  39. Federau C, Cerny M, Roux M, Mosimann PJ, Maeder P, Meuli R, Wintermark M (2016) IVIM perfusion fraction is prognostic for survival in brain glioma. Clin Neuroradiol 27:485–492. https://doi.org/10.1007/s00062-016-0510-7

    Article  PubMed  Google Scholar 

  40. Grech-Sollars M, Hales PW, Miyazaki K, Raschke F, Rodriguez D, Wilson M, Gill SK, Banks T, Saunders DE, Clayden JD, Gwilliam MN, Barrick TR, Morgan PS, Davies NP, Rossiter J, Auer DP, Grundy R, Leach MO, Howe FA, Peet AC, Clark CA (2015) Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain. NMR Biomed 28(4):468–485. https://doi.org/10.1002/nbm.3269

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Winklhofer.

Ethics declarations

Funding

No funding was received for this study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study. Volunteers did not report discomfort during the MRI examination that lasted up to 70 min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surer, E., Rossi, C., Becker, A.S. et al. Cardiac-gated intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for the investigation of intracranial cerebrospinal fluid dynamics in the lateral ventricle: a feasibility study. Neuroradiology 60, 413–419 (2018). https://doi.org/10.1007/s00234-018-1995-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-018-1995-3

Keywords

Navigation