Usefulness of perfusion- and diffusion-weighted imaging to differentiate between pilocytic astrocytomas and high-grade gliomas: a multicenter study in Japan

  • Kazufumi Kikuchi
  • Akio Hiwatashi
  • Osamu Togao
  • Koji Yamashita
  • Ryotaro Kamei
  • Mika Kitajima
  • Masafumi Kanoto
  • Hiroto Takahashi
  • Yusuke Uchiyama
  • Masafumi Harada
  • Yuki Shinohara
  • Takashi Yoshiura
  • Yuki Wakata
  • Hiroshi Honda
Diagnostic Neuroradiology
  • 21 Downloads

Abstract

Purpose

Imaging findings of pilocytic astrocytoma (PA) vary widely, sometimes resembling those of high-grade glioma (HGG). This study aimed to identify the imaging parameters that can be used to differentiate PA from HGG.

Methods

Altogether, 60 patients with PAs and 138 patients with HGGs were included in the study. Tumor properties and the presence of hydrocephalus, peritumoral edema, and dissemination were evaluated. We also measured the maximum relative cerebral blood flow (rCBFmax) and volume (rCBVmax) and determined the minimum apparent diffusion coefficient (ADCmin) in the tumor’s solid components. The relative T1 (rT1), T2 (rT2), and contrast-enhanced T1 (rCE-T1) intensity values were evaluated. Parameters were compared between PAs and HGGs using the Mann–Whitney U test. Receiver operating characteristic (ROC) curve analysis was also used to evaluate these imaging parameters. A value of P < .05 was considered to indicate significance.

Results

Intratumoral hemorrhage and calcification were observed in 10.0% and 21.7% of PAs, respectively. The rCBFmax and rCBVmax values were significantly lower in PAs (0.50 ± 0.35, 1.82 ± 1.21) than those in HGGs (2.98 ± 1.80, 9.54 ± 6.88) (P < .0001, P = .0002, respectively). The ADCmin values were significantly higher in PAs (1.36 ± 0.56 × 10−3 mm2/s) than those in HGGs (0.86 ± 0.37 × 10−3 mm2/s) (P < .0001). ROC analysis showed that the best diagnostic performance was achieved with rCBFmax.

Conclusion

The rCBFmax, rCBVmax, and ADCmin can differentiate PAs from HGGs.

Keywords

Pilocytic astrocytoma High-grade glioma Multicenter study Perfusion-weighted imaging Diffusion-weighted imaging 

Notes

Compliance with ethical standards

Funding

This study was funded by Bayer Yakuhin Ltd. The study data were independently analyzed and interpreted by the funder.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.

Informed consent

For this type of retrospective study formal consent is not required.

Supplementary material

234_2018_1991_FIG4_ESM.gif (402 kb)
Supplementary Figure S1

Placement of regions of interests (ROIs). Neuroradiologists in each institution independently placed three circular ROIs (circles, at left) in the solid component of a tumor. Cystic, necrotic, or hemorrhagic components were avoided with reference to conventional magnetic resonance imaging. An ROI (single circle, at right) was also placed in the contralateral normal-appearing gray matter. (GIF 402 kb)

234_2018_1991_MOESM1_ESM.tif (2.7 mb)
High resolution (TIFF 2753 kb)
234_2018_1991_FIG5_ESM.gif (9 kb)
Supplementary Figure S2

ROC analysis of all pilocytic astrocytomas and high-grade gliomas. ROC analysis shows the best diagnostic performance with rCBFmax. Sensitivity, specificity, and area under the curve are 100%, 91.7%, and 0.98 for rCBFmax; 100%, 76.7%, and 0.92 for rCBVmax; 63.3%, 91.3%, and 0.78 for ADCmin; 41.7%, 79.0%, and 0.60 for rT1; 30.0%, 83.3%, and 0.55 for rCE-T1; and 30.0%, 78.3%, and 0.51 for rT2, respectively. ROC receiver operating characteristic, rCBF max maximum relative cerebral blood flow, AUC area under the curve, rCBV max maximum relative cerebral blood flow, ADC min minimum apparent diffusion coefficient, rT1 relative non-contrast T1-weighted imaging, rT2 relative T2-weighted imaging, rCE-T1 relative contrast-enhanced T1-weighted imaging (GIF 8 kb)

234_2018_1991_MOESM2_ESM.tif (260 kb)
High resolution (TIFF 260 kb)

References

  1. 1.
    Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-Oncology 17(Suppl 4):iv1–iv62.  https://doi.org/10.1093/neuonc/nov189 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Louis D, Ohgaki H, Wiestler O, Cavenee W, Ellison D, Figarella-Branger D, Perry A, Reifenberger G, von Deimling A (2016) WHO classification of tumours of the central nervous system, revised. IARC Press, LyonGoogle Scholar
  3. 3.
    Bell D, Chitnavis BP, Al-Sarraj S, Connor S, Sharr MM, Gullan RW (2004) Pilocytic astrocytoma of the adult—clinical features, radiological features and management. Br J Neurosurg 18(6):613–616CrossRefPubMedGoogle Scholar
  4. 4.
    Murakami R, Hirai T, Kitajima M, Fukuoka H, Toya R, Nakamura H, Kuratsu J, Yamashita Y (2008) Magnetic resonance imaging of pilocytic astrocytomas: usefulness of the minimum apparent diffusion coefficient (ADC) value for differentiation from high-grade gliomas. Acta Radiol 49(4):462–467.  https://doi.org/10.1080/02841850801918555 CrossRefPubMedGoogle Scholar
  5. 5.
    Koeller KK, Rushing EJ (2004) From the archives of the AFIP: pilocytic astrocytoma: radiologic-pathologic correlation. Radiographics 24(6):1693–1708.  https://doi.org/10.1148/rg.246045146 CrossRefPubMedGoogle Scholar
  6. 6.
    Fulham MJ, Melisi JW, Nishimiya J, Dwyer AJ, Di Chiro G (1993) Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology 189(1):221–225.  https://doi.org/10.1148/radiology.189.1.8372197 CrossRefPubMedGoogle Scholar
  7. 7.
    Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY (2003) Primary brain tumours in adults. Lancet 361(9354):323–331.  https://doi.org/10.1016/S0140-6736(03)12328-8 CrossRefPubMedGoogle Scholar
  8. 8.
    Arai K, Sato N, Aoki J, Yagi A, Taketomi-Takahashi A, Morita H, Koyama Y, Oba H, Ishiuchi S, Saito N, Endo K (2006) MR signal of the solid portion of pilocytic astrocytoma on T2-weighted images: is it useful for differentiation from medulloblastoma? Neuroradiology 48(4):233–237.  https://doi.org/10.1007/s00234-006-0048-5 CrossRefPubMedGoogle Scholar
  9. 9.
    Togao O, Hiwatashi A, Yamashita K, Kikuchi K, Mizoguchi M, Yoshimoto K, Suzuki SO, Iwaki T, Obara M, Van Cauteren M, Honda H (2016) Differentiation of high-grade and low-grade diffuse gliomas by intravoxel incoherent motion MR imaging. Neuro-Oncology 18(1):132–141.  https://doi.org/10.1093/neuonc/nov147 CrossRefPubMedGoogle Scholar
  10. 10.
    Sugahara T, Korogi Y, Kochi M, Ikushima I, Hirai T, Okuda T, Shigematsu Y, Liang L, Ge Y, Ushio Y, Takahashi M (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171(6):1479–1486.  https://doi.org/10.2214/ajr.171.6.9843274 CrossRefPubMedGoogle Scholar
  11. 11.
    de Fatima Vasco Aragao M, Law M, Batista de Almeida D, Fatterpekar G, Delman B, Bader AS, Pelaez M, Fowkes M, Vieira de Mello R, Moraes Valenca M (2014) Comparison of perfusion, diffusion, and MR spectroscopy between low-grade enhancing pilocytic astrocytomas and high-grade astrocytomas. AJNR Am J Neuroradiol 35(8):1495–1502.  https://doi.org/10.3174/ajnr.A3905 CrossRefPubMedGoogle Scholar
  12. 12.
    Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, Parkes LM, Smits M, van Osch MJ, Wang DJ, Wong EC, Zaharchuk G (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):102–116.  https://doi.org/10.1002/mrm.25197 CrossRefPubMedGoogle Scholar
  13. 13.
    Bulakbasi N, Kocaoglu M, Farzaliyev A, Tayfun C, Ucoz T, Somuncu I (2005) Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors. AJNR Am J Neuroradiol 26(9):2187–2199PubMedGoogle Scholar
  14. 14.
    Grand SD, Kremer S, Tropres IM, Hoffmann DM, Chabardes SJ, Lefournier V, Berger FR, Pasteris C, Krainik A, Pasquier BM, Peoch M, Le Bas JF (2007) Perfusion-sensitive MRI of pilocytic astrocytomas: initial results. Neuroradiology 49(7):545–550.  https://doi.org/10.1007/s00234-006-0204-y CrossRefPubMedGoogle Scholar
  15. 15.
    Yeom KW, Mitchell LA, Lober RM, Barnes PD, Vogel H, Fisher PG, Edwards MS (2014) Arterial spin-labeled perfusion of pediatric brain tumors. AJNR Am J Neuroradiol 35(2):395–401.  https://doi.org/10.3174/ajnr.A3670 CrossRefPubMedGoogle Scholar
  16. 16.
    Bull JG, Saunders DE, Clark CA (2012) Discrimination of paediatric brain tumours using apparent diffusion coefficient histograms. Eur Radiol 22(2):447–457.  https://doi.org/10.1007/s00330-011-2255-7 CrossRefPubMedGoogle Scholar
  17. 17.
    Shibahara I, Kanamori M, Kumabe T, Endo H, Sonoda Y, Ogawa Y, Watanabe M, Tominaga T (2009) Hemorrhagic onset of pilocytic astrocytoma and pilomyxoid astrocytoma. Brain Tumor Pathol 26(1):1–5.  https://doi.org/10.1007/s10014-008-0243-7 CrossRefPubMedGoogle Scholar
  18. 18.
    Coakley KJ, Huston J 3rd, Scheithauer BW, Forbes G, Kelly PJ (1995) Pilocytic astrocytomas: well-demarcated magnetic resonance appearance despite frequent infiltration histologically. Mayo Clin Proc 70(8):747–751.  https://doi.org/10.1016/S0025-6196(11)64346-2 CrossRefPubMedGoogle Scholar
  19. 19.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109.  https://doi.org/10.1007/s00401-007-0243-4 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Henson JW, Gaviani P, Gonzalez RG (2005) MRI in treatment of adult gliomas. Lancet Oncol 6(3):167–175.  https://doi.org/10.1016/S1470-2045(05)01767-5 CrossRefPubMedGoogle Scholar
  21. 21.
    Pencalet P, Maixner W, Sainte-Rose C, Lellouch-Tubiana A, Cinalli G, Zerah M, Pierre-Kahn A, Hoppe-Hirsch E, Bourgeois M, Renier D (1999) Benign cerebellar astrocytomas in children. J Neurosurg 90(2):265–273.  https://doi.org/10.3171/jns.1999.90.2.0265 CrossRefPubMedGoogle Scholar
  22. 22.
    Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223(1):11–29.  https://doi.org/10.1148/radiol.2231010594 CrossRefPubMedGoogle Scholar
  23. 23.
    Nelson SJ, Cha S (2003) Imaging glioblastoma multiforme. Cancer J 9(2):134–145CrossRefPubMedGoogle Scholar
  24. 24.
    Martin AJ, Liu H, Hall WA, Truwit CL (2001) Preliminary assessment of turbo spectroscopic imaging for targeting in brain biopsy. AJNR Am J Neuroradiol 22(5):959–968PubMedGoogle Scholar
  25. 25.
    Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, Knopp EA, Zagzag D (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24(10):1989–1998PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kazufumi Kikuchi
    • 1
  • Akio Hiwatashi
    • 1
  • Osamu Togao
    • 1
  • Koji Yamashita
    • 1
  • Ryotaro Kamei
    • 1
  • Mika Kitajima
    • 2
  • Masafumi Kanoto
    • 3
  • Hiroto Takahashi
    • 4
  • Yusuke Uchiyama
    • 5
  • Masafumi Harada
    • 6
  • Yuki Shinohara
    • 7
  • Takashi Yoshiura
    • 8
  • Yuki Wakata
    • 9
  • Hiroshi Honda
    • 1
  1. 1.Department of Clinical Radiology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  2. 2.Department of Diagnostic Radiology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
  3. 3.Department of Radiology, Division of Diagnostic RadiologyYamagata University Graduate School of Medical Science MedicineYamagataJapan
  4. 4.Department of RadiologyOsaka University Graduate School of MedicineSuitaJapan
  5. 5.Department of RadiologyKurume University School of MedicineKurumeJapan
  6. 6.Department of Radiology and Radiation Oncology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
  7. 7.Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of MedicineTottori UniversityTottoriJapan
  8. 8.Department of Radiology, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
  9. 9.Department of RadiologyHyogo College of MedicineNishinomiyaJapan

Personalised recommendations