Neuroradiology

, Volume 59, Issue 10, pp 971–987 | Cite as

A diffusion spectrum imaging-based tractographic study into the anatomical subdivision and cortical connectivity of the ventral external capsule: uncinate and inferior fronto-occipital fascicles

  • Sandip S. Panesar
  • Fang-Cheng Yeh
  • Christopher P. Deibert
  • David Fernandes-Cabral
  • Vijayakrishna Rowthu
  • Pinar Celtikci
  • Emrah Celtikci
  • William D. Hula
  • Sudhir Pathak
  • Juan C. Fernández-Miranda
Diagnostic Neuroradiology

Abstract

Purpose

The inferior fronto-occipital fasciculus (IFOF) and uncinate fasciculus (UF) are major fronto-capsular white matter pathways. IFOF connects frontal areas of the brain to parieto-occipital areas. UF connects ventral frontal areas to anterior temporal areas. Both fascicles are thought to subserve higher language and emotion roles. Controversy pertaining to their connectivity and subdivision persists in the literature, however.

Methods

High-definition fiber tractography (HDFT) is a non-tensor tractographic method using diffusion spectrum imaging data. Its major advantage over tensor-based tractography is its ability to trace crossing fiber pathways. We used HDFT to investigate subdivisions and cortical connectivity of IFOF and UF in 30 single subjects and in an atlas comprising averaged data from 842 individuals. A per-subject aligned, atlas-based approach was employed to seed fiber tracts and to study cortical terminations.

Results

For IFOF, we observed a tripartite arrangement corresponding to ventrolateral, ventromedial, and dorsomedial frontal origins. IFOF volume was not significantly lateralized to either hemisphere. UF fibers arose from ventromedial and ventrolateral frontal areas on the left and from ventromedial frontal areas on the right. UF volume was significantly lateralized to the left hemisphere. The data from the averaged atlas was largely in concordance with subject-specific findings. IFOF connected to parietal, occipital, but not temporal, areas. UF connected predominantly to temporal poles.

Conclusion

Both IFOF and UF possess subdivided arrangements according to their frontal origin. Our connectivity results indicate the multifunctional involvement of IFOF and UF in language tasks. We discuss our findings in context of the tractographic literature.

Keywords

Tractography Inferior fronto-occipital fasciculus Uncinate fasciculus Diffusion spectrum imaging Neuroanatomy 

References

  1. 1.
    Catani M et al (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage 17(1):77–94CrossRefPubMedGoogle Scholar
  2. 2.
    Kier EL et al (2004) MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer’s loop of the optic radiation. Am J Neuroradiol 25(5):677–691PubMedGoogle Scholar
  3. 3.
    Fernandez-Miranda JC et al (2008) Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery 62(6 Suppl 3):989–1026 discussion 1026-8 PubMedGoogle Scholar
  4. 4.
    Martino J et al (2010) Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex 46(5):691–699CrossRefPubMedGoogle Scholar
  5. 5.
    Sarubbo S et al (2013) Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct 218(1):21–37CrossRefPubMedGoogle Scholar
  6. 6.
    Martino J et al (2010) New insights into the anatomic dissection of the temporal stem with special emphasis on the inferior fronto-occipital fasciculus: implications in surgical approach to left mesiotemporal and temporoinsular structures. Neurosurgery 66(3 Suppl Operative):4–12PubMedGoogle Scholar
  7. 7.
    Von Der Heide RJ et al (2013) Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain 136(Pt 6):1692–1707CrossRefGoogle Scholar
  8. 8.
    Lawes IN et al (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. NeuroImage 39(1):62–79CrossRefPubMedGoogle Scholar
  9. 9.
    Caverzasi E et al (2014) Q-ball of inferior fronto-occipital fasciculus and beyond. PLoS One 9(6):e100274CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hau J et al (2016) Cortical terminations of the inferior fronto-occipital and uncinate fasciculi: anatomical stem-based virtual dissection. Front Neuroanat 10:58CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wu Y et al (2016) Subcomponents and connectivity of the inferior fronto-occipital fasciculus revealed by diffusion spectrum imaging fiber tracking. Front Neuroanat 10:88PubMedPubMedCentralGoogle Scholar
  12. 12.
    Forkel SJ et al (2014) The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex 56:73–84CrossRefPubMedGoogle Scholar
  13. 13.
    Catani M et al (2007) Symmetries in human brain language pathways correlate with verbal recall. Proc Natl Acad Sci U S A 104(43):17163–17168CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Leng B et al (2016) The uncinate fasciculus as observed using diffusion spectrum imaging in the human brain. Neuroradiology 58(6):595–606CrossRefPubMedGoogle Scholar
  15. 15.
    Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57(1):8–16CrossRefPubMedGoogle Scholar
  16. 16.
    Glasser MF, Rilling JK (2008) DTI tractography of the human brain's language pathways. Cereb Cortex 18(11):2471–2482CrossRefPubMedGoogle Scholar
  17. 17.
    Dick AS, Tremblay P (2012) Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain 135(Pt 12):3529–3550CrossRefPubMedGoogle Scholar
  18. 18.
    Fernandez-Miranda JC (2013) Editorial: beyond diffusion tensor imaging. J Neurosurg 118(6):1363–1365 discussion 1365-6 CrossRefPubMedGoogle Scholar
  19. 19.
    Yeh FC, Wedeen VJ, Tseng WY (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29(9):1626–1635CrossRefPubMedGoogle Scholar
  20. 20.
    Latini F et al (2015) The use of a cerebral perfusion and immersion-fixation process for subsequent white matter dissection. J Neurosci Methods 253:161–169CrossRefPubMedGoogle Scholar
  21. 21.
    Fernandez-Miranda JC et al (2015) Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Struct Funct 220(3):1665–1680CrossRefPubMedGoogle Scholar
  22. 22.
    Wang X et al (2016) Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Brain Struct Funct 221(4):2075–2092CrossRefPubMedGoogle Scholar
  23. 23.
    Yeh FC, Tseng WY (2011) NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. NeuroImage 58(1):91–99CrossRefPubMedGoogle Scholar
  24. 24.
    Yeh FC et al (2013) Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One 8(11):e80713CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tzourio-Mazoyer N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1):273–289CrossRefPubMedGoogle Scholar
  26. 26.
    Collins DL et al (1998) Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging 17(3):463–468CrossRefPubMedGoogle Scholar
  27. 27.
    Wakana S et al (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230(1):77–87CrossRefPubMedGoogle Scholar
  28. 28.
    Mori S et al (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage 40(2):570–582CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fernandez-Miranda JC et al (2008) The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical study. J Neurosurg 108(4):764–774CrossRefPubMedGoogle Scholar
  30. 30.
    Michel Thiebaut de Schotten, Dominic H. ffytche, Alberto Bizzi, Flavio Dell'Acqua, Matthew Allin, Muriel Walshe, Robin Murray, Steven C. Williams, Declan G.M. Murphy, Marco Catani, (2011) Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. NeuroImage 54 (1):49-59Google Scholar
  31. 31.
    Zaccarella E, Friederici AD (2015) Merge in the human brain: a sub-region based functional investigation in the left pars opercularis. Front Psychol 6:1818CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tettamanti M et al (2002) Neural correlates for the acquisition of natural language syntax. NeuroImage 17(2):700–709CrossRefPubMedGoogle Scholar
  33. 33.
    Friederici AD et al (2003) The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. Cereb Cortex 13(2):170–177CrossRefPubMedGoogle Scholar
  34. 34.
    Andin J et al (2015) Phonology and arithmetic in the language-calculation network. Brain Lang 143:97–105CrossRefPubMedGoogle Scholar
  35. 35.
    Amunts K et al (2004) Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—the roles of Brodmann areas 44 and 45. NeuroImage 22(1):42–56CrossRefPubMedGoogle Scholar
  36. 36.
    Heim S, Eickhoff SB, Amunts K (2008) Specialisation in Broca's region for semantic, phonological, and syntactic fluency? NeuroImage 40(3):1362–1368CrossRefPubMedGoogle Scholar
  37. 37.
    Kang AM et al (1999) An event-related fMRI study of implicit phrase-level syntactic and semantic processing. NeuroImage 10(5):555–561CrossRefPubMedGoogle Scholar
  38. 38.
    Gold BT et al (2005) Common and dissociable activation patterns associated with controlled semantic and phonological processing: evidence from FMRI adaptation. Cereb Cortex 15(9):1438–1450CrossRefPubMedGoogle Scholar
  39. 39.
    Dapretto M, Bookheimer SY (1999) Form and content: dissociating syntax and semantics in sentence comprehension. Neuron 24(2):427–432CrossRefPubMedGoogle Scholar
  40. 40.
    Poldrack RA et al (1999) Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. NeuroImage 10(1):15–35CrossRefPubMedGoogle Scholar
  41. 41.
    Mechelli A et al (2007) Dissociating stimulus-driven semantic and phonological effect during reading and naming. Hum Brain Mapp 28(3):205–217CrossRefPubMedGoogle Scholar
  42. 42.
    Vorobyev VA et al (2004) Linguistic processing in visual and modality-nonspecific brain areas: PET recordings during selective attention. Brain Res Cogn Brain Res 20(2):309–322CrossRefPubMedGoogle Scholar
  43. 43.
    Ranganath C, Johnson MK, D'Esposito M (2003) Prefrontal activity associated with working memory and episodic long-term memory. Neuropsychologia 41(3):378–389CrossRefPubMedGoogle Scholar
  44. 44.
    Berthoz S et al (2002) An fMRI study of intentional and unintentional (embarrassing) violations of social norms. Brain 125(Pt 8):1696–1708CrossRefPubMedGoogle Scholar
  45. 45.
    Vollm B et al (2006) Serotonergic modulation of neuronal responses to behavioural inhibition and reinforcing stimuli: an fMRI study in healthy volunteers. Eur J Neurosci 23(2):552–560CrossRefPubMedGoogle Scholar
  46. 46.
    Rogers RD et al (1999) Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J Neurosci 19(20):9029–9038PubMedGoogle Scholar
  47. 47.
    Goel V et al (1998) Neuroanatomical correlates of human reasoning. J Cogn Neurosci 10(3):293–302CrossRefPubMedGoogle Scholar
  48. 48.
    Wildgruber D et al (2005) Identification of emotional intonation evaluated by fMRI. NeuroImage 24(4):1233–1241CrossRefPubMedGoogle Scholar
  49. 49.
    Levitin DJ, Menon V (2003) Musical structure is processed in "language" areas of the brain: a possible role for Brodmann area 47 in temporal coherence. NeuroImage 20(4):2142–2152CrossRefPubMedGoogle Scholar
  50. 50.
    Rolston JD et al (2015) Frontal operculum gliomas: language outcome following resection. J Neurosurg 122(4):725–734CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sanai N et al (2009) Operative techniques for gliomas and the value of extent of resection. Neurotherapeutics 6(3):478-86 Google Scholar
  52. 52.
    Kosslyn SM et al (1999) The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284(5411):167–170CrossRefPubMedGoogle Scholar
  53. 53.
    Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vis Res 41(10–11):1409–1422CrossRefPubMedGoogle Scholar
  54. 54.
    Bernal B, Ardila A, Rosselli M (2015) Broca's area network in language function: a pooling-data connectivity study. Front Psychol 6:687CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sherrill KR et al (2015) Functional connections between optic flow areas and navigationally responsive brain regions during goal-directed navigation. NeuroImage 118:386–396CrossRefPubMedGoogle Scholar
  56. 56.
    Orr JM, Smolker HR, Banich MT (2015) Organization of the human frontal pole revealed by large-scale DTI-based connectivity: implications for control of behavior. PLoS One 10(5):e0124797CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Fox MD et al (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A 103(26):10046–10051CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Seeley WW et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Cohen L, Dehaene S (2004) Specialization within the ventral stream: the case for the visual word form area. NeuroImage 22(1):466–476CrossRefPubMedGoogle Scholar
  60. 60.
    Mesulam MM (1981) A cortical network for directed attention and unilateral neglect. Ann Neurol 10(4):309–325CrossRefPubMedGoogle Scholar
  61. 61.
    Posner MI et al (1984) Effects of parietal injury on covert orienting of attention. J Neurosci 4(7):1863–1874PubMedGoogle Scholar
  62. 62.
    Petrides M et al (2012) The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex 48(1):46–57CrossRefPubMedGoogle Scholar
  63. 63.
    Kubicki M et al (2002) Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. Am J Psychiatry 159(5):813–820CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Hasan KM et al (2009) Development and aging of the healthy human brain uncinate fasciculus across the lifespan using diffusion tensor tractography. Brain Res 1276:67–76CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Park HJ et al (2004) White matter hemisphere asymmetries in healthy subjects and in schizophrenia: a diffusion tensor MRI study. NeuroImage 23(1):213–223CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Highley JR et al (2002) Asymmetry of the uncinate fasciculus: a post-mortem study of normal subjects and patients with schizophrenia. Cereb Cortex 12(11):1218–1224CrossRefPubMedGoogle Scholar
  67. 67.
    Thomas C et al (2015) Diffusion MRI properties of the human uncinate fasciculus correlate with the ability to learn visual associations. Cortex 72:65–78CrossRefPubMedGoogle Scholar
  68. 68.
    Thiebaut de Schotten M et al (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48(1):82–96CrossRefPubMedGoogle Scholar
  69. 69.
    Tsapkini K, Frangakis CE, Hillis AE (2011) The function of the left anterior temporal pole: evidence from acute stroke and infarct volume. Brain 134(Pt 10):3094–3105CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Olson IR, Plotzker A, Ezzyat Y (2007) The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130(Pt 7):1718–1731CrossRefPubMedGoogle Scholar
  71. 71.
    O'Doherty JP (2007) Lights, camembert, action! The role of human orbitofrontal cortex in encoding stimuli, rewards, and choices. Ann N Y Acad Sci 1121:254–272CrossRefPubMedGoogle Scholar
  72. 72.
    Boorman ED et al (2009) How green is the grass on the other side? Frontopolar cortex and the evidence in favor of alternative courses of action. Neuron 62(5):733–743CrossRefPubMedGoogle Scholar
  73. 73.
    Daw ND et al (2006) Cortical substrates for exploratory decisions in humans. Nature 441(7095):876–879CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Papagno C (2011) Naming and the role of the uncinate fasciculus in language function. Curr Neurol Neurosci Rep 11(6):553–559CrossRefPubMedGoogle Scholar
  75. 75.
    Papagno C et al (2016) Long-term proper name anomia after removal of the uncinate fasciculus. Brain Struct Funct 221(1):687–694CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Sandip S. Panesar
    • 1
  • Fang-Cheng Yeh
    • 2
  • Christopher P. Deibert
    • 1
  • David Fernandes-Cabral
    • 1
  • Vijayakrishna Rowthu
    • 1
  • Pinar Celtikci
    • 1
  • Emrah Celtikci
    • 1
  • William D. Hula
    • 4
  • Sudhir Pathak
    • 3
  • Juan C. Fernández-Miranda
    • 1
  1. 1.Department of Neurological SurgeryUniversity of Pittsburgh Medical CenterPittsburghUSA
  2. 2.Department of PsychologyCarnegie Mellon UniversityPittsburghUSA
  3. 3.Learning Research and Development Center, Department of PsychologyUniversity of PittsburghPittsburghUSA
  4. 4.Veterans Affairs Pittsburgh Healthcare SystemPittsburghUSA

Personalised recommendations