Skip to main content

Advertisement

Log in

Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Altered brain functional connectivity has been reported in patients with amblyopia by recent neuroimaging studies. However, relatively little is known about the alterations in interhemispheric functional connectivity in amblyopia. The present study aimed to investigate the functional connectivity patterns between homotopic regions across hemispheres in patients with anisometropic and strabismic amblyopia under resting state.

Methods

Nineteen monocular anisometropic amblyopia (AA), 18 strabismic amblyopia (SA), and 20 normal-sight controls (NC) were enrolled in this study. After a comprehensive ophthalmologic examination, resting-state fMRI scanning was performed in all participants. The pattern of the interhemispheric functional connectivity was measured with the voxel-mirrored homotopic connectivity (VMHC) approach. VMHC values differences within and between three groups were compared, and correlations between VMHC values and each the clinical variable were also analyzed.

Results

Altered VMHC was observed in AA and SA patients in lingual gyrus and fusiform gyrus compared with NC subjects. The altered VMHC of lingual gyrus showed a pattern of AA > SA > NC, while the altered VMHC of fusiform gyrus showed a pattern of AA > NC > SA. Moreover, the VMHC values of lingual gyrus were positively correlated with the stereoacuity both in AA and SA patients, and the VMHC values of fusiform gyrus were positively correlated with the amount of anisometropia just in AA patients.

Conclusion

These findings suggest that interhemispheric functional coordination between several homotopic visual-related brain regions is impaired both in AA and SA patients under resting state and revealed the similarities and differences in interhemispheric functional connectivity between the anisometropic and strabismic amblyopia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AA:

Anisometropic amblyopia

SA:

Strabismic amblyopia

NC:

Normal-sight controls

rs-fMRI:

Resting-state functional magnetic resonance

RSFC:

Resting-state functional connectivity

VMHC:

Voxel-mirrored homotopic connectivity

cVA:

Corrected visual acuity

GRF:

Gaussian random field

FFA:

Fusiform face area

References

  1. Holmes JM, Clarke MP (2006) Amblyopia. Lancet 367(9519):1343–1351. doi:10.1016/S0140-6736(06)68581-4

    Article  PubMed  Google Scholar 

  2. Levi DM (2013) Linking assumptions in amblyopia. Vis Neurosci 30(5–6):277–287. doi:10.1017/S0952523813000023

    Article  PubMed  Google Scholar 

  3. Hamm LM, Black J, Dai S, Thompson B (2014) Global processing in amblyopia: a review. Front Psychol 5:583. doi:10.3389/fpsyg.2014.00583

    Article  PubMed  PubMed Central  Google Scholar 

  4. Noorden GK (1977) Mechanisms of amblyopia. Advances in ophthalmology = Fortschritte der Augenheilkunde = Progres en ophtalmologie 34:93–115

    CAS  PubMed  Google Scholar 

  5. Joly O, Franko E (2014) Neuroimaging of amblyopia and binocular vision: a review. Front Integr Neurosci 8:62. doi:10.3389/fnint.2014.00062

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang T, Li Q, Guo M, Peng Y, Li Q, Qin W, Yu C (2014) Abnormal functional connectivity density in children with anisometropic amblyopia at resting-state. Brain Res 1563:41–51. doi:10.1016/j.brainres.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  7. Ding K, Liu Y, Yan X, Lin X, Jiang T (2013) Altered functional connectivity of the primary visual cortex in subjects with amblyopia. Neural plasticity 2013:612086. doi:10.1155/2013/612086

    Article  PubMed  PubMed Central  Google Scholar 

  8. Keenan PA, Whitman RD, Pepe J (1989) Hemispheric asymmetry in the processing of high and low spatial frequencies: a facial recognition task. Brain Cogn 11(2):229–237

    Article  CAS  PubMed  Google Scholar 

  9. Rossion B, Dricot L, Devolder A, Bodart JM, Crommelinck M, De Gelder B, Zoontjes R (2000) Hemispheric asymmetries for whole-based and part-based face processing in the human fusiform gyrus. J Cogn Neurosci 12(5):793–802

    Article  CAS  PubMed  Google Scholar 

  10. Sergent J, Bindra D (1981) Differential hemispheric processing of faces: methodological considerations and reinterpretation. Psychol Bull 89(3):541–554

    Article  CAS  PubMed  Google Scholar 

  11. Zuo XN, Kelly C, Di Martino A, Mennes M, Margulies DS, Bangaru S, Grzadzinski R, Evans AC, Zang YF, Castellanos FX, Milham MP (2010) Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. The Journal of neuroscience : the official journal of the Society for Neuroscience 30(45):15034–15043. doi:10.1523/JNEUROSCI.2612-10.2010

    Article  CAS  Google Scholar 

  12. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711. doi:10.1038/nrn2201

    Article  CAS  PubMed  Google Scholar 

  13. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 34(4):537–541

    Article  CAS  Google Scholar 

  14. Stark DE, Margulies DS, Shehzad ZE, Reiss P, Kelly AM, Uddin LQ, Gee DG, Roy AK, Banich MT, Castellanos FX, Milham MP (2008) Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations. The Journal of neuroscience : the official journal of the Society for Neuroscience 28(51):13754–13764. doi:10.1523/JNEUROSCI.4544-08.2008

    Article  CAS  Google Scholar 

  15. Hoptman MJ, Zuo XN, D’Angelo D, Mauro CJ, Butler PD, Milham MP, Javitt DC (2012) Decreased interhemispheric coordination in schizophrenia: a resting state fMRI study. Schizophr Res 141(1):1–7. doi:10.1016/j.schres.2012.07.027

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang L, Li K, Zhang QE, Zeng YW, Jin Z, Dai WJ, Su YA, Wang G, Tan YL, Yu X, Si TM (2013) Interhemispheric functional connectivity and its relationships with clinical characteristics in major depressive disorder: a resting state fMRI study. PLoS One 8(3):e60191. doi:10.1371/journal.pone.0060191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu X, Zhang J, Jiang X, Zhou C, Wei L, Yin X, Wu Y, Li J, Zhang Y, Wang J (2015) Decreased interhemispheric functional connectivity in subtypes of Parkinson’s disease. J Neurol 262(3):760–767. doi:10.1007/s00415-014-7627-x

    Article  PubMed  Google Scholar 

  18. Society CO (2011) Expert consensus on amblyopia diagnosis (2011). Chinese Journal of Ophthalmology 47(8):768

    Google Scholar 

  19. Song XW, Dong ZY, Long XY, Li SF, Zuo XN, Zhu CZ, He Y, Yan CG, Zang YF (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6(9):e25031. doi:10.1371/journal.pone.0025031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wallace DK, Lazar EL, Melia M, Birch EE, Holmes JM, Hopkins KB, Kraker RT, Kulp MT, Pang Y, Repka MX, Tamkins SM, Weise KK, Pediatric Eye Disease Investigator G (2011) Stereoacuity in children with anisometropic amblyopia. Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus / American Association for Pediatric Ophthalmology and Strabismus 15(5):455–461. doi:10.1016/j.jaapos.2011.06.007

    Article  Google Scholar 

  21. Yan CG, Wang XD, Zuo XN, Zang YF (2016) DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics 14(3):339–351. doi:10.1007/s12021-016-9299-4

    Article  PubMed  Google Scholar 

  22. Boynton GM, Hegde J (2004) Visual cortex: the continuing puzzle of area V2. Current biology : CB 14(13):R523–R524. doi:10.1016/j.cub.2004.06.044

    Article  CAS  PubMed  Google Scholar 

  23. Salvador R, Martinez A, Pomarol-Clotet E, Gomar J, Vila F, Sarro S, Capdevila A, Bullmore E (2008) A simple view of the brain through a frequency-specific functional connectivity measure. NeuroImage 39(1):279–289. doi:10.1016/j.neuroimage.2007.08.018

    Article  CAS  PubMed  Google Scholar 

  24. von der Heydt R, Zhou H, Friedman HS (2000) Representation of stereoscopic edges in monkey visual cortex. Vis Res 40(15):1955–1967

    Article  PubMed  Google Scholar 

  25. Qiu FT, von der Heydt R (2005) Figure and ground in the visual cortex: v2 combines stereoscopic cues with gestalt rules. Neuron 47(1):155–166. doi:10.1016/j.neuron.2005.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Willmore BD, Prenger RJ, Gallant JL (2010) Neural representation of natural images in visual area V2. The Journal of neuroscience : the official journal of the Society for Neuroscience 30(6):2102–2114. doi:10.1523/JNEUROSCI.4099-09.2010

    Article  CAS  Google Scholar 

  27. Levi DM, Knill DC, Bavelier D (2015) Stereopsis and amblyopia: a mini-review. Vis Res 114:17–30. doi:10.1016/j.visres.2015.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  28. McKee SP, Levi DM, Movshon JA (2003) The pattern of visual deficits in amblyopia. J Vis 3(5):380–405. doi:10.1167/3.5.5

    Article  PubMed  Google Scholar 

  29. Li G, Yao Z, Wang Z, Yuan N, Talebi V, Tan J, Wang Y, Zhou Y, Baker CL Jr (2014) Form-cue invariant second-order neuronal responses to contrast modulation in primate area V2. The Journal of neuroscience : the official journal of the Society for Neuroscience 34(36):12081–12092. doi:10.1523/JNEUROSCI.0211-14.2014

    Article  CAS  Google Scholar 

  30. Henriksson L, Nurminen L, Hyvarinen A, Vanni S (2008) Spatial frequency tuning in human retinotopic visual areas. J Vis 8(10):5.1–513. doi:10.1167/8.10.5

    Article  Google Scholar 

  31. Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. The Journal of neuroscience : the official journal of the Society for Neuroscience 17(11):4302–4311

    CAS  Google Scholar 

  32. Le Grand R, Mondloch CJ, Maurer D, Brent HP (2001) Neuroperception. Early visual experience and face processing. Nature 410(6831):890. doi:10.1038/35073749

    Article  CAS  PubMed  Google Scholar 

  33. Lerner Y, Pianka P, Azmon B, Leiba H, Stolovitch C, Loewenstein A, Harel M, Hendler T, Malach R (2003) Area-specific amblyopic effects in human occipitotemporal object representations. Neuron 40(5):1023–1029

    Article  CAS  PubMed  Google Scholar 

  34. Banko EM, Kortvelyes J, Nemeth J, Weiss B, Vidnyanszky Z (2013a) Amblyopic deficits in the timing and strength of visual cortical responses to faces. Cortex; a journal devoted to the study of the nervous system and behavior 49(4):1013–1024. doi:10.1016/j.cortex.2012.03.021

    Article  PubMed  Google Scholar 

  35. Cattaneo Z, Vecchi T, Monegato M, Pece A, Merabet LB, Carbon CC (2013) Strabismic amblyopia affects relational but not featural and gestalt processing of faces. Vis Res 80:19–30. doi:10.1016/j.visres.2013.01.007

    Article  PubMed  Google Scholar 

  36. Banko EM, Kortvelyes J, Weiss B, Vidnyanszky Z (2013b) How the visual cortex handles stimulus noise: insights from amblyopia. PLoS One 8(6):e66583. doi:10.1371/journal.pone.0066583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Ethics declarations

Funding

No funding was received for this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the Southwest Hospital Ethics Committee and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Xie, B., Yang, H. et al. Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study. Neuroradiology 59, 517–524 (2017). https://doi.org/10.1007/s00234-017-1824-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-017-1824-0

Keywords

Navigation